期刊文献+

稀疏低秩噪声模型下无监督实时单通道语音增强算法 被引量:8

Unsupervised real-time single channel speech enhancement with sparse low-rank and noise model
原文传递
导出
摘要 针对现有基于字典学习的增强算法需要先验信息、不易实时处理的问题,提出一种便于实时处理的无监督的单通道语音增强算法。首先,该算法将无监督条件下背景噪声的建模问题转化为带噪语音幅度谱的稀疏低秩噪声分解;然后,采用增量非负子空间方法对背景噪声进行在线字典学习,获得能够体现背景噪声时变特性的自适应噪声字典;最后,利用所得的噪声字典,采用易于实时处理的逐帧迭代方式,对带噪语音进行处理。实验结果表明:相较于多带谱减法和基于低秩稀疏矩阵分解的增强算法,所提算法在噪声抑制方面的性能尤为显著,在多项性能评价指标上,均表现出更好的结果。 An unsupervised speech enhancement algorithm suitable for real-time processing in one channel record is proposed, aiming at resolving the prior-information-reliance and real-time processing difficulty in existing enhancement algorithms based on dictionary learning. With the magnitude of noisy speech, it recasts unsupervised background noise modeling problem into sparse, low-rank and noise decomposition. Subsequently, an adaptive noise dictionary which reflects the dynamic noise background is learned in an online fashion by employing incremental nonnegative subspace learning. Finally, frame-by-frame enhancement is conducted with the learnt dictionary, which makes the real-time processing much more convenient. Extensive experiments demonstrate that the presented algorithm outperforms state-of- the-art method such as multi-band spectral subtraction and method based on low-rank and sparse matrix decomposition, especially in terms of noise reduction.
出处 《声学学报》 EI CSCD 北大核心 2015年第4期607-614,共8页 Acta Acustica
基金 国家自然科学基金(61072042 61402519 61471394) 江苏省自然科学基金(BK2012510 BK20140071 BK20140074)资助
  • 相关文献

参考文献23

  • 1Lu Yang, Loizou P C. A geometric approach to spectral subtraction. Speech Con~munication, 2008; 50:453--466.
  • 2Lim J S, Alan V O. Enhancement and bandwidth compres- sion of noisy speech. Proceedings of IEEE, 1979; 67(12): 1586 1604.
  • 3周彬,邹霞,张雄伟.基于多元Laplace语音模型的语音增强算法[J].电子与信息学报,2012,34(7):1562-1567. 被引量:4
  • 4Jensen J R, Benesty J, Christensen M G, Jensen S H. En- hancement of single-channel periodic signals in the time- domain. IEEE Trans. on Audio, Speech and Language Processing, 2012; 20(7): 1948--1963.
  • 5Mohammadiha N, Smaragdis P, Leijon A. Supervised and unsupervised speech enhancement using nonnegative ma- trix factorization. IEEE Trans. on Audio, Speech, and Language Processing, 2013; 21(10): 2140--2151.
  • 6Wilson K, Raj B, Smaragdis P, Divakaran A. Speech de- noising using nonnegative matrix factorization with priors. ICASSP, 2008:4029 4032.
  • 7Mohammadiha N, Leijon A. Nonnegative HMM for babble noise derived from speech HMM: Application to speech en- hancement. IEEE Trans. on Audio, Speech and Language Processing, 2013; 21(5): 998--1011.
  • 8Schmidt M, Larson J. Reduction of non-stationary noise using a non-negative latent variable decomposition. IEEE Workshop on Machine Learning for Signal Prvcess (MLSP), 2008:486--491.
  • 9黄建军,张雄伟,张亚非,邹霞.时频字典学习的单通道语音增强算法[J].声学学报,2012,37(5):539-547. 被引量:13
  • 10Sigg C D, Dikk T, Buhmann J M. Speech enhancement using generative dictionary learning. IEEE Transactions on Audio, Speech and Language Processing, 2012; 20(6): 1698--1712.

二级参考文献39

  • 1邹霞,陈亮,张雄伟.基于Gamma语音模型的语音增强算法[J].通信学报,2006,27(10):118-123. 被引量:11
  • 2Ephraim Y and Malah D. Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[J]. IEEE Transactions on Acoustic, Speech and Signal Processing, 1984, 32(6): 1109-1121.
  • 3Gazor S and Zhang W. Speech probability distribution[J]. IEEE Signal Processing Letters, 2003, 10(7): 204-207.
  • 4Martin R. Speech enhancement based oil minimum mean square error estimation and supergaussian priorsIJ]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 845-856.
  • 5Lotter T and Vary P. Speech enhancement by MAP spectral amplitude estimation using a super-gaussian speech model[J]. EURASIP Journal on Applied Signal Processing, 2005, 2005(7): 1110-1126.
  • 6Hendriks C R, Heusdens R, and Jensen J. Log-spectral magnitude MMSE estimators under super-gaussian densities[C]. INTERSPEECH, Brighton, UK, 2009: 1319-1322.
  • 7Paliwal K, Schwerin B, and Wojcicki K. Single channel speech enhancement using MMSE estimation of short-time modulation magnitude spectrum[C]. INTERSPEECH, Florence, Italy, 2011: 1209-1212.
  • 8Esch T and Vary P. Model-based speech enhancement using SNR dependent MMSE estimation[C]. IEEE InternationalConference on Acoustics, Speech and Signal Processing, Prague, Czech, 2011: 4652-4655.
  • 9Erkelens S J, Hendriks C R, Heusdens R, et al.. Minimum mean-square error estimation of discrete fourier coeffcients with generalized Gamma priors[J]. IEEE Transactions on Audio, Speech and Language Processing, 2007, 6(15): 1741-1752.
  • 10Borgstrom J B and Alwan A. Log-spectral amplitude estimation with generalized Gamma distributions for speech enhancement[C). IEEE International Acoustics, Speech and Signal Processing 2011: 4756-4759. Conference on Prague, Czech,.

共引文献15

同被引文献41

引证文献8

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部