期刊文献+

基于LS-SVM的电力通信网性能劣化评估与预测模型研究 被引量:12

Performance Degradation Assessment and Prediction Model of Power Communication Network Based on LS-SVM
在线阅读 下载PDF
导出
摘要 随着电力通信网络规模越来越大,运行维护人员对通信网运行状态的实时有效监控,对设备故障的快速准确判断越来越困难,需要对通信网运行的健康状态进行科学评估,以及对网络性能的劣化进行趋势预测,从而可以提前预知网络可能存在的隐患。论文充分利用通信网现有的海量状态监测数据,提出基于健康状态数据的电力通信网性能劣化评估模型,在此基础上利用最小二乘支持向量机(LS-SVM)性能劣化时间序列进行预测,预警通信网的异常状态,提高通信网运行维护的水平,减少故障导致的断网损失。 With the increasing scale of power communication network,the operation and maintenance personnel are more and more difficult to effectively monitor the real-time operational status and accurately determine equipment failure.Therefore,it is necessary to study the health state evaluation and performance degradation trend prediction of communication network operation.In this paper,making full use of the existing mass communications network status monitoring data,power communication network performance evaluation model based on the deterioration of the health status of the data is proposed.On this basis,least squares support vector machine(LS-SVM)time series is used to forecast performance degradation,in order to timely complete the communication network abnormal state early warning,improve communication network operation and maintenance level,reduce the fault caused by the loss of the network.
出处 《计算机与数字工程》 2016年第4期610-614,共5页 Computer & Digital Engineering
关键词 电力通信网 劣化评估 预测模型 power communication network degradation assessment prediction model
  • 相关文献

参考文献7

  • 1周湶,孙威,任海军,张昀,孙才新,谢国勇,邓景云.基于最小二乘支持向量机和负荷密度指标法的配电网空间负荷预测[J].电网技术,2011,35(1):66-71. 被引量:36
  • 2顾燕萍,赵文杰,吴占松.最小二乘支持向量机的算法研究[J].清华大学学报(自然科学版),2010,50(7):1063-1066. 被引量:146
  • 3Xueli An,Dongxiang Jiang, Chao Liu, et al. Windfarm power prediction based on wavelet decompositionand chaotic time series[J].Expert Systems with Appli-cations,2011,38(9) : 11280-11285.
  • 4SUYKENSJ. Least Squares Support Vector Machines[M].Singapore: World Scientific,2002,9:71-89.
  • 5Wang XD, Zhang CJ,Zhang HR. Sensor dynamicmodeling using least square support vector machines[J].Chinese Journalof Scientific Instrument,2006,27(7):730-733.
  • 6Cao L. Practical method for determining the minimumembedding dimension of a scalar time series[J].Physi-cal D,1997,110:43-50.
  • 7GRASSBERGER P,PRCX:ACCIA I. Measuring theStrangeness of Strange Attractors [J].Physics I),1983,9:189-208.

二级参考文献20

共引文献180

同被引文献93

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部