期刊文献+

基于支持向量机工具的性能劣化建模方法 被引量:6

Performance degradation model based on support vector machine
在线阅读 下载PDF
导出
摘要 针对基于故障数据的数控装备可靠性研究中的小样本问题,提出了建立基于支持向量机的性能劣化模型。在研究支持向量机的建模理论和参数优化方法的基础上,将最小二乘法支持向量机工具LSSVM.M应用于性能退化数据处理,提出一种改进的参数选择方法,以提高拟合和预测准确性。通过实例,验证了该方法的可行性,并建立了数控机床加工精度的性能劣化模型,为可靠性评估奠定了基础。 In order to solve the small samples problem in reliability assessment based on failure data of Numerical Control (NC) equipments, the method of degradation modeling based on Support Vector Machine (SVM) was proposed. After studying on modeling theories of SVM and the parameter optimization of SVM, the Least Squares Support Vector Machines tool (LSSVM. M) was used to process the performance degradation data. An improved parameter selection method was presented, which improved the veracity of simulation and forecasting. After validating by examples, the performance degradation model of NC machining accuracy was established, which laid foundation for reliability assessment.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第4期685-689,共5页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2006AA04Z407) 国家自然科学基金资助项目(50705036)~~
关键词 支持向量机 性能劣化模型 退化数据 可靠性评估 数控系统 support vector machine performance degradation model degradation data reliability assessment numerical control system
  • 相关文献

参考文献14

二级参考文献25

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2张苹苹.航空产品加速寿命试验研究及应用[J].北京航空航天大学学报,1995,21(4):124-129. 被引量:22
  • 3[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1999.
  • 4[2]Müller K R, Smola A J, Rats¨ch G, et al. Predicting timeserieswithsupport vector machines[A]. Proc ICANN′97[C]. New York: Springer,1997.999-1004.
  • 5[3]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.155-161.
  • 6[4]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.281-287.
  • 7[5]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh: ACM Press,1992.144-152.
  • 8[6]Campbell C. Algorithmic approaches to training support vector machnies: A survey[A]. Proc ESANN′2000[C]. Belgium: D-Facto Publications,2000.27-36.
  • 9[7]Marsh L S, Albright L D. Economically optimum day temperature for greenhouse hydroponic lettuce production - Part 2: Results and simulations[J]. Trans ASAE,1991,34(3):557-562.
  • 10[8]Maksarov D, Chalabi Z S. Computing bounds on greenhouseenergyrequirementsusingboundederror approach[J]. Contr Eng Prac,1998,(6):947-995.

共引文献315

同被引文献69

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2高宏力,许明恒,傅攀.基于集成神经网络的刀具磨损量监测[J].西南交通大学学报,2005,40(5):641-644. 被引量:8
  • 3高宏力,许明恒,傅攀,杜全兴.基于动态树理论的刀具磨损监测技术[J].机械工程学报,2006,42(7):227-230. 被引量:24
  • 4赵宇,李兵,李秀,刘文煌,任守榘.基于改进支持向量机的客户流失分析研究[J].计算机集成制造系统,2007,13(1):202-207. 被引量:42
  • 5HUANG Runqing,XI Lifeng,LI Xinglin,et al.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007,21(1):193-207.
  • 6JAGANNATHAN S,RAJU G V S.Remaining useful life prediction of automotive engine oils using MEMS technologies[C]∥Proceedings of the 2000 American Control Conference.Chicago:American Automatic Control Council,2000,1:3511-3512.
  • 7CHEN Hanxin,ZUO M J.Demodulation of gear vibration signals for fault detection[C]∥8th International Conference on Reliability-ICRMS 2009,Maintainability and Safety.Chengdu:IEEE,2009:826-830.
  • 8YAN Jihong,LEE J.Degradation assessment and fault modes classification using logistic regression[J].Journal of Manufacturing Science and Engineering,Transactions of the ASME,2005,127(4):912-914.
  • 9张会瑞.机床进给系统的动力学分析[D].长春:吉林大学,2009.
  • 10HUANG N E,WU M L C,LONG S R,et al.A confidential limit for the empirical mode decomposition and Hilbert spectrum analysis[J].Proceedings of the Royal Society of London,2003,459(2037):2317-2345.

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部