期刊文献+

海底复杂环境下机器人摆脱障碍物路径优化方法研究 被引量:3

The Path Optimization Method on Underwater Robots Getting Rid of Obstales
在线阅读 下载PDF
导出
摘要 机器人在海底复杂环境下,使用传统的PSO路径规划算法存在连续波动问题,这会导致海底机器人速度和位置出现较大的扰动,摆脱障碍物路径优化结果存在较大偏差,对此提出一种改进PSO的海底复杂环境下机器人路径摆脱优化方法.在传统算法中引入速度-位置搜索模型,采用用于障碍物约束限制的高维函数和认知函数,在机器人障碍物摆脱的不同阶段及时调整认知系数以及环境系数的取值,获取最佳的摆脱障碍物路径,使海底机器人能高效摆脱障碍物.在粒子数N为200,粒子维度为10,最大迭代次数为800的实验中,使用此算法做出的路径规划结果同最优的路径规划情况具有较高的匹配度,误差控制在3.5%以内,障碍物摆脱效果更明显,具有较好的应用价值. In view of the robot at the bottom of the sea under complicated environment, the traditional PSO path planning algorithm for continuous wave problems, lead to a larger submarine robot speed and position of disturbance, get rid of the obstacles path optimization results, there is a big deviation of an improved PSO underwater robot path out of optimization method under complicated environment, into the speed - position search model in the traditional algorithm, using for high-dimensional function and cognitive function obstacle constraints limit, at various stages of the robot obstacle from the adjust value of cognitive factor and environmental factor, get the best out of obstacles path, make the underwater robot can efficiently get rid of the obstacles. In particle number is 200 N, particle dimension to 10, the maximum number of iterations for 800 experiments, this algorithm make the results of the path planning with the optimal path planning of has high compatibility, error control within 3. 5%, the obstacles to get rid of the effect is more obvious, has good application value.
作者 翟雁 郭晓波
出处 《微电子学与计算机》 CSCD 北大核心 2016年第2期100-103,共4页 Microelectronics & Computer
基金 国家自然科学基金河南人才培养联合基金(U1204613)
关键词 海底机器人 障碍物摆脱 路径优化 改进PSO方法 underwater robot obstacles avoid path optimization improved PSO
  • 相关文献

参考文献5

二级参考文献27

  • 1李青,焦李成.利用集成支撑矢量机提高分类性能[J].西安电子科技大学学报,2007,34(1):68-70. 被引量:6
  • 2宋晓静,范宁军.基于几何和模糊控制合成算法的小型移动机器人局部路径规划[J].合肥工业大学学报(自然科学版),2007,30(1):49-52. 被引量:2
  • 3刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008.
  • 4[1]Latombe J C.Robot motion planning[M].Kluwer Academic Publishers,1991
  • 5[2]Glasius R.Neural network dynamics for path planning and obstacleavoidance[J].Neural Networks, 1995; 8 ( 1 ): 125~133
  • 6[3]Yang S X,M Max. Neural Network Approaches to Dynamic CollisionFree Trajectory Generation[J].IEEE SMC Part B,2001;31(3):302~318
  • 7[4]Kassim A,V Kumar. Path planners based on wave expansion neural network[J].Robotics and Autonomous Systems, 1999;26:1~22
  • 8[5]Muniz F et al. Neural controller for a mobile robot in nonstationary environment[C].In:the 2nd IFAC on Intelligent Autonomous Vehicles, Helsinki,Finland, 1995:275~284
  • 9[6]Piper J,E Granum. Computing distance transformations in convex and non-convex domains[J].pattern Recognition, 1987;20:599~615
  • 10[7]Al-Hasan,Vachtsevanos G.Intelligent route planning for fast autonomous vehicles operating in a large natural terrain[J].Robotics and Autonomous Systems, 2002 ;40:1~24

共引文献57

同被引文献28

引证文献3

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部