期刊文献+

基于气象因素的PM_(2.5)质量浓度预测模型 被引量:21

Prediction models of PM_(2.5) mass concentration based on meteorological factors
原文传递
导出
摘要 为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM_(2.5)质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM_(2.5)质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM_(2.5)质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM_(2.5)质量浓度预测的首选方法。 In order to get the optimal prediction model,the prediction models of PM_(2.5)mass concentration based on multiple linear regression and machine learning were developed. Basic values of pollutants mass concentrations and periodical factors were introduced as predictive inputs based on meteorological factors. Then four prediction models were developed for comparison. Results showed that goodness of fit of multiple linear regression model based on improved predictive inputs was increased from 0. 52 to 0. 64. The selected meteorological factors,basic values of pollutants mass concentrations and periodical factors could accurately describe daily variation of PM_(2.5). BP neural network and support vector machine models could be trained to model the highly non-linear relationships between PM_(2.5)mass concentration and predictive inputs. They provided satisfactory results with goodness of fit of 0. 69 and 0. 74,respectively. Support vector machine model was proved to be optimal prediction model of PM_(2.5)mass concentration.
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第6期76-83,共8页 Journal of Shandong University(Engineering Science)
基金 北京市属高等学校高层次人才引进与培养--"长城学者"培养计划资助项目(CIT&TCD20130320)
关键词 PM2.5 多元线性回归 机器学习 BP神经网络 支持向量机 PM2.5 multiple linear regression machine learning BP neural network support vector machine
  • 相关文献

参考文献25

  • 1刘杰,杨鹏,吕文生.北京大气颗粒物污染特征及空间分布插值分析[J].北京科技大学学报,2014,36(9):1269-1279. 被引量:15
  • 2刘杰,杨鹏,吕文生,刘阿古达木,刘俊秀.模糊时序与支持向量机建模相结合的PM_(2.5)质量浓度预测[J].北京科技大学学报,2014,36(12):1694-1702. 被引量:22
  • 3ZIOMAS I C, MELAS D, ZEREFOS C S, et al. Forecasting peak pollutant levels from meteorological variables[J]. Atmospheric Environment, 1995, 29(24):3703-3711.
  • 4CHALOULAKOU A, KASSOMENOS P, SPYRELLIS N, et al. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece[J]. Atmospheric Environment, 2003, 37(5):649-660.
  • 5HUSSEIN T, KARPPINEN A, KUKKONEN J, et al. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles[J]. Atmospheric Environment, 2006, 40(8):1427-1440.
  • 6于涛,王可丽,李芳,董志龙,何慧根.兰州市大气环境质量影响因素多元统计模型研究[J].西安建筑科技大学学报(自然科学版),2009,41(5):723-729. 被引量:4
  • 7KUKKONEN J, PARTANEN L, KARPPINEN A, et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurement in central Helsinki[J]. Atmospheric Environment, 2003, 37(32):4539-4550.
  • 8MCKENDRY I. Evaluation of artificial neural networks for fine particulate pollution(PM10 and PM2.5) forecasting[J]. Journal of the Air & Waste Management Association, 2002, 52(9):1096-1101.
  • 9石灵芝,邓启红,路婵,刘蔚巍.基于BP人工神经网络的大气颗粒物PM_(10)质量浓度预测[J].中南大学学报(自然科学版),2012,43(5):1969-1974. 被引量:51
  • 10GRIVAS G, CHALOULAKOU A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece[J]. Atmospheric Environment, 2006, 40(7):1216-1229.

二级参考文献123

共引文献208

同被引文献219

引证文献21

二级引证文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部