期刊文献+

结合形态非抽样小波和引导滤波的图像融合研究

Combination Morphological Un-decimated Wavelets and Guided Filtering of Image Fusion
在线阅读 下载PDF
导出
摘要 提出一种新的图像融合方法,该方法将形态非抽样小波和引导滤波结合,实现一种快速有效并且对图像边缘保持明显的融合过程。该方法首先对源图像进行形态非抽样小波分解得到基础层图像,源图像减基础层图像得到细节图像。接着对细节图像进行显著比较得到权重图,然后对权重图进行引导滤波,源图像作为引导图得到优化后的权值图,最后将优化后的权值图分别与基础层图像和细节图像加权平均再相加得到最终的融合图像。相对于现有的图像融合算法,该方法能有效的保留源图像的边缘部分,有助于显著目标的识别。通过实验证明了该算法能得到具有高对比度的融合图像,融合效果良好,在实时图像融合中具有较高的应用价值。 A new image fusion method is proposed, which combined morphological un-decimated wavelets and guided filter to achieve a fast and effective and preserve images edges in the fusion process. Firstly, the method is based on morphological un-decimated wavelets decomposition of an image into base layer, source image subtraction base layer to get the detail image. Secondly, detail images image are compared to get weight map. Third, the guided image filtering is performed on each weight map with the corresponding source image serving as the guidance image to achieve the optimized weight map. Finally the optimized weight image respectivelywith weighted average of base image and detail image to get the final fusion result. Relative to the existing image fusion algorithm, the method can effectively preserve source image edges and contribute to target detection. Experiments show that the algorithm can get a fusion of images with high contrast and fusion works well and has a high value in the real-time image fusion.
出处 《深圳信息职业技术学院学报》 2015年第3期11-16,共6页 Journal of Shenzhen Institute of Information Technology
基金 国家自然科学基金项目 61271420 基于非抽样形态小波与视觉显著计算的图像融合的研究
关键词 图像融合 形态小波 引导滤波 非抽样 image fusion morphological wavelets guided filtering un-decimated
  • 相关文献

参考文献13

  • 1Ardeshir G. A., Nikolov S. Image fusion: Advances in the slate of theart[J]. Infor- marion Fusion. 2007, 8(2): 114-118P.
  • 2Huanan Xu; Zhe Liu; Guohua Peng, "Image fusion method based on total variation and a trous wavelet," Signal Processing, Communications and Computing (ICSPCC), 2011 IEEE International Coifference on , vol., no., pp.1,6, 14-16 Sept. 2011.
  • 3邢雅琼,王晓丹,毕凯,雷蕾.基于NSCT和ICA的红外和可见光图像融合方法[J].系统工程与电子技术,2013,35(11):2251-2257. 被引量:8
  • 4Henk JAM Heijmans, John Goutsias. Nonlinear multiresolution signal decomposition schemes, ii. Morphological wavelets[J]. IEEE Transactions on Image Processing. 2000, 9(11):1897-1913.
  • 5赵鹏,浦昭邦.基于形态学4子带分解金字塔的图像融合[J].光学学报,2007,27(1):40-44. 被引量:10
  • 6钱永浩,吴小俊,罗晓清.改进的基于形态学小波多聚焦图像融合方法[J].计算机工程与应用,2010,46(7):158-161. 被引量:2
  • 7Wen Bin Zhang, Lu Shen, Jun Sheng Li, et al. Morphological Undecimated Wavelet Decomposition for Fault Feature Extraction of Rolling Element Bearing[C]. 2nd International Congress on Image and Signal Processing, 2009. CISP'09, 2009. IEEE:1-5.
  • 8邓苗,张基宏,柳伟,梁永生.基于形态非抽样小波的实时图像融合方法[J].计算机应用,2012,32(10):2809-2813. 被引量:8
  • 9Zhengguo Li; Jinghong Zheng; Zijian Zhu; Shiqian Wu; Rahardja, S., "A bilateral filter in gradient domain," Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on , vol., no., pp.1113,1116, 25-30 March 2012.
  • 10Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, "Edge-preservingdecompositions for multi-scale tone and detail manipulation," ACMTrans. Graph., vol. 27, no. 3, pp. 249-256, Aug. 2008.

二级参考文献64

  • 1刘坤,郭雷,李晖晖,陈敬松.Fusion of Infrared and Visible Light Images Based on Region Segmentation[J].Chinese Journal of Aeronautics,2009,22(1):75-80. 被引量:12
  • 2王宏,敬忠良,李建勋.一种基于目标区域的图像融合新方法[J].中国激光,2005,32(3):351-355. 被引量:20
  • 3Chanda De B.A simple and efficient algorithm for multi-focus image fusion using morphological wavelets[J}.Signal Processing,2006,86: 924-936.
  • 4Burt P J,Lolezynski R J.Enhanced image capture through fusion[C]// Proceeding of the Fourth International Conference on Computer Vision, Berlin, Germany, 1993 : 173-182.
  • 5Li H,Manjunath B,Mitra S.Multi-sensor image fusion using thewavelet transform[J].Graph Models Image Process, 1995,57 (3) : 235-245.
  • 6Yang X,Yang W,Pei J.Different focus points images fusion based on wavelet decomposition[C]//Proceedings of Third International Conference on Information Fusion, 2000,1: 3-8.
  • 7Heijimans H J,Goutsias J.Nonlinear multi-resolution signal decomposition scheme.Part 1 :Morphological Pyramids[J].IEEE Trans Image Processing, 2000,9( 11 ) : 1862-1876.
  • 8Heijimans H J,Goutsias J.Multi-resolution signal decomposition schemes.Part 2:Morphological wavelets[J].IEEE Trans Image Processing, 2000,9:1897-1913.
  • 9Lin P L,Huang P Y.Fusion methods based on dynamic-segmented morphological wavelet or cut and paste for muhi-focus images[J]. Signal Processing,2008,88:1511-1527.
  • 10Lin P L,Huang P Y.Bloek-complexity based information hiding scheme for binary images[J].WSEAS Trans Signal Processing,2006, 2(5):718-725.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部