期刊文献+

一种太赫兹微流控芯片 被引量:6

A kind of terahertz microfluidic chip
在线阅读 下载PDF
导出
摘要 很多生物大分子和糖类的特征振动模式恰好位于太赫兹频段内,使得太赫兹成为一种有潜力的生物化学传感工具。水对于生物分子发挥其功能有着至关重要的作用,而由于水对太赫兹辐射有极强的吸收性,研究液体样品的太赫兹透射谱很难。设计了一款太赫兹微流控芯片,以石英片作为基底,利用光刻技术在石英片上制作出高度50μm的微流通道,从而减少水的吸收;聚二甲基硅氧烷(PDMS)作为盖膜与石英片键合后打孔。分别在太赫兹时域光谱系统中测量了芯片的透过率、水的吸收系数以及折射率,在透过率高于30%的0.2 THz^1 THz频段内水的吸收系数没有明显峰值出现,且随着频率的增加而单调递增,与前期考察结果一致。此微流控芯片有潜力用于液体在0.2 THz^1 THz频段内的光谱测量,实现对小剂量生物化学液体样品的实时、无标记传感。 The characteristic vibration mode of many sugars and biological macromolecules are just located in the range of THz, therefore THz frequency range shows the potential to act as a tool of sensing biochemistry samples. Water plays an important role in the function of biological molecules, nevertheless it is hard to get terahertz transmission of liquids due to the significant THz absorption by water. A terahertz microfluidic chip made of quartz and Polydimethylsiloxane(PDMS) is designed. The quartz acts as a substrate, on which a microfluidic channel with a height of 50 μm is etched by lithography technology. PDMS acts as a membrane, which is bonded with quartz substrate, then punched. The transmittance of the chip, absorption spectra and refractive index of water are measured, respectively. The results match well to what have published that there is no obvious peak but a monotonic increase in the absorption coefficient from 0.2 THz to 1 THz when the transmittance is higher than 30%. This microfluidic chip can be used for terahertz spectrum measurement of liquid in the range of 0.2 THz-1 THz and realize real-time and label-free sensing for biochemistry samples in small volume liquid.
出处 《太赫兹科学与电子信息学报》 2015年第4期536-539,共4页 Journal of Terahertz Science and Electronic Information Technology
关键词 太赫兹 微流控 芯片 传感 terahertz microfluidic biochip spectrum
  • 相关文献

参考文献8

  • 1Kawano Yukio. Terahertz waves: a tool for condensed matter, the life sciences and astronomy[J]. Contemporary Physics,2013,54(3):143–165.
  • 2Duponchel L,Laurette S,Hatirnaz B,et al. Terahertz microfluidic sensor for in situ exploration of hydration shell ofmolecules[J]. Chemometrics and Intelligent Laboratory Systems, 2013,123(4):28–35.
  • 3Laurette Simon,Treizebre Anthony,Elagli Adil,et al. Highly sensitive terahertz spectroscopy in microsystem[J]. The RoyalSociety of Chemistry, 2012,2(26):10064-10071.
  • 4LIU Lei,Pathak Rahul,CHENG Lijing,et al. Real-time frequency-domain terahertz sensing and imaging of isopropylalcohol-water mixtures on a microfluidic chip[J]. Sensors and Actuators B-Chemical, 2013,184:228–234.
  • 5Baragwanath A J,Swift P,DAI Dechang,et al. Silicon based microfluidic device for THz frequencies[J]. Journal of AppliedPhysics, 2010,108(013102):1-8.
  • 6TANG Qi,LIANG Min,LU Yi,et al. Development of terahertz(THz) microfluidic devices for "Lab-on-a-Chip" applications[J].Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications,Proc. of SPIE, 2013,8585(06):1-6.
  • 7Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373.
  • 8ZHANG Chenfeng,Durbin S M. Hydration-induced far-infrared absorption increase in myoglobin[J]. Journal of PhysicalChemistry B, 2006,110(46):23607-23613.

同被引文献33

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部