期刊文献+

波纹误差对同轴布拉格结构反射特性的影响 被引量:3

Effect of random corrugation errors on reflection characteristics of coaxial Bragg structure with rectangular ripples
在线阅读 下载PDF
导出
摘要 利用模式匹配法建立了分析波纹参数具有随机误差的矩形槽同轴布拉格结构反射特性的理论模型,并以一个以基模(TEM)工作于220GHz附近的矩形槽同轴布拉格结构为例,研究了矩形凹槽的深度、宽度、周期长度以及位置的随机误差对其反射率频率响应的影响。数值模拟结果表明:在给定的误差范围条件下,凹槽宽度与位置的随机误差对该结构的反射性能影响较小,而凹槽深度与周期长度的随机误差是影响结构反射特性的主要因素,因此在结构的加工制备过程中应视器件性能要求严格控制两者的制造公差。 By using the mode-matching method,a theoretical model is presented to analyze the reflection characteristics of the coaxial Bragg structures corrugated with rectangular ripples,where the inner-rod and outer-wall ripples have random parameters due to fabrication error.Numerical simulations are carried out to investigate the effect of the errors of the corrugated depth,corrugated width,length of period and ripple position on the reflectivity frequency response for a coaxial Bragg structure which operates with TEM mode in the vicinity of 220 GHz.Numerical results reveal that,with a given range of error values,the random errors of corrugated width and ripple position have less influence on the reflection spectrum,while the random errors of corrugated depth and length of period critically affect the reflection properties of the example structure.Therefore,the manufacturing tolerances of these two parameters should be strictly controlled in accordance with the performance of the devices employed with coaxial Bragg structures.The theoretical model as well as the corresponding numerical code may provide engineering references for further applications of the coaxial Bragg structure with rectangular ripples.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第8期113-118,共6页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(61471122) 国家重点基础研究发展计划项目(2013CB834305) 广东省科技计划项目(2013B010401040) 广东省教育厅青年创新人才项目(2014KQNCX220)
关键词 同轴布拉格结构 模式匹配法 矩形槽 加工误差 反射率 coaxial Bragg structure mode-matching method rectangular ripple fabrication error reflectivity
  • 相关文献

参考文献19

  • 1Tao Jin,Yu Xuechao,Hu Bin,et al.Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J].Optics Letters,2014,39(2):271-274.
  • 2欧阳征标,刘海山,李景镇.光子晶体超窄带滤波器[J].光子学报,2002,31(3):281-284. 被引量:42
  • 3杨淑连,盛翠霞,魏芹芹,何建廷,宿元斌,申晋.基于啁啾布喇格光栅的液位传感器[J].强激光与粒子束,2013,25(11):2869-2872. 被引量:5
  • 4Bratman V L,Denisov G G,Ginzburg N S,et al.FEL’s with Bragg reflection resonators:Cyclotron autoresonance masers vesus ubitrons[J].IEEE J Quant Electron,1983,19(3):282-293.
  • 5Ginzburg N S,Peskov N Y,Sergeev A S,et al.High selective two-dimensional Bragg resonators of planar geometry:Theoretical,computational,and experimental study[J].Journal of Applied Physics,2012,112:114504.
  • 6Wagner D,Kasparek W,Leuterer F,et al.Bragg reflection band stop filter for ECE on Wega[J].Journal of Infrared,Millimeter,and Terahertz Waves,2011,32(12):1424-1433.
  • 7Chong C K,McDermott D B,Razeghi M M,et al.Bragg reflectors[J].IEEE Transactions on Plasma Science,1992,20(3):393-402.
  • 8令钧溥,贺军涛,张建德,曹亦兵,张泽海,江涛.螺旋波纹波导被动式脉冲压缩模拟研究[J].强激光与粒子束,2012,24(3):752-756. 被引量:3
  • 9Barroso J J,Castro J P,Leite J P,et al.Design and test of a 6.7 GHz coaxial Bragg reflector[J].IEEE Transactions on Plasma Science,2008,36(2):481-487.
  • 10Konoplev I V,MacGrane P,Phelps A D R,et al.Observation of photonic band-gap control in one-dimensional Bragg structures[J].Appl Phys Lett,2005,87:121104.

二级参考文献132

共引文献67

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部