期刊文献+

自适应双模式差分进化算法 被引量:3

Adaptive double mode differential evolution algorithm
在线阅读 下载PDF
导出
摘要 为解决无约束全局最优问题,提出自适应双变异模式差分进化算法。该算法的变异规则结合差分进化算法中的两种基本变异模式,通过采用自适应缩放因子和交叉概率,来改善种群的多样性,平衡全局搜索和局部寻优能力。对高维benchmark典型函数进行数值仿真,与另外5种算法进行比较,比较结果表明,该算法具有较高的搜索精度、收敛速度以及较强的跳出局部最优解的能力。 An adaptive double mutation mode differential evolution algorithm was proposed for solving unconstrained global opti- mization problems. In the improved algorithm, the mutation rule was combined with two basic mutation modes. In addition, to improve the diversity of the population and balance the search capabilities between global and local search, the adaptive scaling factor and the crossover probability were used. This modification was used to enhance the local search ability and increase the convergence rate. Numerical experiments and comparisons on a set of well-known high dimensional benchmark functions indicate that the improved algorithm outperforms other existing differential evolution algorithms in terms of final solution quality, conver- gence rate, and the ability to jump out of local optimal solution.
出处 《计算机工程与设计》 北大核心 2015年第8期2250-2254,2270,共6页 Computer Engineering and Design
关键词 差分进化算法 进化模式 自适应 收敛速度 高维问题 differential evolution algorithm evolution mode self-adaptive velocity of convergence high-dimensional problem
  • 相关文献

参考文献15

二级参考文献165

共引文献342

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部