期刊文献+

基于差异演化算法和多属性决策的机电系统可靠性多目标优化设计 被引量:1

Mechanical electronics system reliability multi-objective optimization design based on differential evolution algorithm and multiple attribute decision making
在线阅读 下载PDF
导出
摘要 针对机电系统可靠性设计问题,以可靠性和费用(或体积等)最优为目标建立可靠性设计的多目标优化模型.提出了自适应多目标差异演化算法,该算法提出了自适应缩放因子和混沌交叉率,采用改进的快速排序方法构造Pareto最优解,采用NSGA-II的拥挤操作对档案文件进行消减.采用自适应多目标差异演化算法获得多目标问题的Pareto最优解,利用TOPSIS方法对Pareto最优解进行多属性决策.实际工程结果表明:自适应多目标差异演化算法调节参数更少,且求得的Pareto最优解分布均匀;采用基于TOPSIS的多属性决策方法得到的结果合理可行. In order to improve mechanical electronics system reliability, a multi-objective optimization model based on reliability indices and cost (volume et al. ) was constructed. Adaptive Multi- Objective Differential Evolution Algorithm (AMODE) was proposed. The algorithm proposed chaotic crossover ratio and adaptive scaling factor, improved quick sort algorithm was employed to build Pareto optimal solutions, and the shrink of an external archive was achieved based on crowding distance, which was used in NSGA-Ⅱ. The Pareto optimal solutions were obtained by AMODE. Multiple attribute decision making method TOPSIS was adopted to rank these solutions. An actual project solution shows that less parameters of AMODE need adjust and the algorithm can obtain uniformly distributed Pareto optimal solutions. The result based on multiple attribute decision making method-TOPSIS is reasonable and feasible.
出处 《工程设计学报》 CSCD 北大核心 2011年第6期412-417,共6页 Chinese Journal of Engineering Design
基金 国家自然科学基金资助项目(50775153) 高等学校博士学科点专项科研基金资助项目(20091415110002) 山西省自然科学基金资助项目(2008011027-1) 山西省研究生教育改革研究项目(20092016) 山西省研究生优秀创新项目(20093022)
关键词 可靠性 多目标优化 多属性决策 TOPSIS 自适应 reliability multi-obj ective optimization multiple attribute decision making TOPSIS adaptive
  • 相关文献

参考文献14

二级参考文献241

共引文献826

同被引文献16

  • 1夏勇其,吴祈宗.一种混合型多属性决策问题的TOPSIS方法[J].系统工程学报,2004,19(6):630-634. 被引量:171
  • 2罗仕鉴,潘云鹤.产品设计中的感性意象理论、技术与应用研究进展[J].机械工程学报,2007,43(3):8-13. 被引量:249
  • 3NAGAMACHI M. Kansei engineering: a new ergonomic consumer-oriented technology for product development [J]. International Journal of Industrial Ergonomics, 1995,15(1) :3-11.
  • 4FUNG K,KWONG C,SIU K W,et al. A multi-objective genetic algorithm approach to rule mining for affective product design[J]. Expert Systems with Applications, 2012,39(8) :7411-7419.
  • 5YANG C C. Constructing a hybrid kansei engineering system based on multiple affective responses;application to product form design[J]. Computers & Industrial En- gineering, 2011,60(4) :760-768.
  • 6JIANG H,KWONG C,LIU Y,et al. A methodology of integrating affective design with defining engineering specifications for product design[J]. International Jour- nal of Production Research, 2015,53 (8) : 2472-2488.
  • 7MENG D S, WANG J H, YANG C C. Affective re- sponse dimension selection for product design: a com- parison of cluster analysis and Procrustes analysis[J]. International Journal of Digital Content Technology Its Applications, 2011,5 (1) : 305-318.
  • 8SHANG H H, MING C C,CHANG C C. A semantic differential study of designers' and users' product form perception[J]. International Journal of Industrial Ergo- nomics, 2000,25 (4) : 375-391.
  • 9李永锋,朱丽萍.基于模糊层次分析法的产品配色设计[J].机械科学与技术,2012,31(12):2028-2033. 被引量:10
  • 10林丽,阳明庆,张超,刘玲玲.产品情感研究及情感测量的关键技术[J].图学学报,2013,34(1):122-127. 被引量:25

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部