期刊文献+

硫醇模板法组装金纳米粒子及其增强细胞色素c电化学活性研究

Thiol-template-anchored Au nanoparticle electrodes and activation of electrochemical charge transfer of Cytochrome c
原文传递
导出
摘要 采用烷基双硫醇修饰和配体交换的方法,将弱保护剂四辛基溴化铵(TOAB)保护的金纳米粒子(Au NPs)组装到电极表面,详细研究了合成条件和组装时间对纳米粒子的尺寸、形状和表面覆盖度的影响,并运用透射电镜(TEM)和扫描隧道显微镜(STM)进行了表征.采用此纳米粒子修饰的电极获得了良好的细胞色素c(Cyt.c)分子的电化学响应,研究了电极表面纳米粒子的覆盖度对Cyt.c电化学活性的影响,并讨论了Au NPs增强电子长程转移的影响因素. Thiol-modified surfaces are employed as the template for anchoring Au nanoparticles (AuNPs) which are protected by tetraethyl ammonium bromide (TOAB). The synthesis and assembly of AuNPs are studied systematically with characterization by transmission electron microscopy and scanning tunneling microscopy. Such nanoparticle-modified electrodes are used to study the electrochemical reactivity of Cyt. c and show enhancement of long-range charge transfer of the Cyt. c. The influence of nanoparticle coverage on electrode for the electrochemical reactivity of Cyt. c is studied, and factors influencing long-range charge transfer are also discussed.
出处 《中国科学:化学》 CAS CSCD 北大核心 2015年第4期405-411,共7页 SCIENTIA SINICA Chimica
基金 国家自然科学基金项目(21021002和21033007) 欧盟人员交换项目(PIRSES-GA-2012-318990-ELECTRONANO MAT)的资助
关键词 硫醇表面修饰 配体交换 纳米粒子组装 Cyt.c 长程电荷转移 thiol surface modification, ligand exchange, nanoparticles assembly, Cyt. c, long-range charge transfer
  • 相关文献

参考文献24

  • 1Wang Y, Zhou Y, Sokolov J, Rigas B, Levon K, Rafailovich MA. Potentiometric protein sensor built with surface molecular imprinting method. Biosens Bioelec'tron. 2008, 24:162-166.
  • 2You CC, Miranda OR. Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA. Bunz UHF, Rotello VM. Detection and identification of proteins using nanoparticle-fluorescent polymer "'chemical nose" sensors. Nat Nantech, 2007, 2:318-323.
  • 3Tomari Y, Matranga C, Haley B. Martinez N, Zamore PD. A protein sensor for siRNA asymmetry. Sience, 2(104, 306: 1377-1380.
  • 4Stevens JM. Cytochrome c as an experimental model protein. Metallomics, 2011, 3:319-322.
  • 5Hawkridge FM. Taniguchi 1. The direct charge transfer reactions of Cytochrome c at electrode surfaces. Comment Inorg Chem, 1995. 17: 163-187.
  • 6Arnold SF, Kakiuchi ZQ, Knoll T, Niki WK. Investigation of the electrode reaction of Cytochrome ~' through mixed self-assembled monolayers of alkanethiols on gold(111) surfaces. J Electroanal Chem, 1997,438:91-97.
  • 7Yue H, Khoshtariya D, Waldeck DH, Grochol J, Hildebrandt P, Murgida DH. On the electron transfer mechanism between Cytochrome c and metal electrodes. Evidence for dynamic control at short distances. J Phvs Chetn B, 2(106, 110:19906-19913.
  • 8Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science, 20113, 299:1877-1881.
  • 9lensen PS, Chi Q, Grumsen FB, Abad JM, Horsewell A, Schiffrin DJ, Ulstrup J. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial charge transfer. J Phvs Chem C, 2007, 111:6124-6132.
  • 10Liu Y, Han T, Chen C, Bao N, Yu CM, Gu HY. A novel platform of hemoglobin on core-shell structurally Fe304@Au nanoparticles and its direct electrochemistry. Electrochhn Acta, 2011, 56:3238-3247.

二级参考文献14

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部