期刊文献+

多变量自回归和多线性主成分分析结合的多通道信号特征提取研究 被引量:4

A Novel Method of Multi-channel Feature Extraction Combining Multivariate Autoregression and Multiple-linear Principal Component Analysis
原文传递
导出
摘要 脑机接口(BCI)系统通过从脑信号中提取特征对其进行识别。针对自回归模型特征提取方法和传统主成分分析降维方法处理多通道信号的局限性,本文提出了多变量自回归(MVAR)模型和多线性主成分分析(MPCA)结合的多通道特征提取方法,并用于脑磁图/脑电图(MEG/EEG)信号识别。首先计算MEG/EEG信号的MVAR模型的系数矩阵,然后采用MPCA对系数矩阵进行降维,最后使用线性判别分析分类器对脑信号分类。创新在于将传统单通道特征提取方法扩展到多通道。选用BCI竞赛IV数据集3和1数据进行实验验证,两组实验结果表明MVAR和MPCA结合的特征提取方法处理多通道信号是可行的。 Brain-computer interface(BCI)systems identify brain signals through extracting features from them.In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals,this paper presents a multichannel feature extraction method that multivariate autoregressive(MVAR)model combined with the multiple-linear principal component analysis(MPCA),and used for magnetoencephalography(MEG)signals and electroencephalograph(EEG)signals recognition.Firstly,we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method,and then reduced the dimensions to a lower one,using MPCA.Finally,we recognized brain signals by Bayes Classifier.The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one.We then carried out the experiments using the data groups ofⅣ_Ⅲ andⅣ_Ⅰ.The experimental results proved that the method proposed in this paper was feasible.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第1期19-24,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61473339) 中国博士后科学基金资助项目(2014M561202) 河北省2014年度博士后专项资助项目(B2014010005) 首批"河北省青年拔尖人才"资助项目
关键词 脑机接口 脑磁图 脑电图 多变量自回归模型 多线性主成分分析 特征提取 brain-computer interface magnetoencephalography electroencephalograph multivariate autoregressive model multi-linear principal component analysis feature extraction
  • 相关文献

参考文献14

  • 1MCFARLAND D J,WOLPAW J R.Brain-computer interfaces for communication and control[J].Commun ACM,2011,54(5):60-66.
  • 2MOUSAVI E A,MALLER J J,FITZGERALD P B,et al.Wavelet common spatial pattern in asynchronous offline brain computer interfaces[J].Biomed Signal Process Contr,2011,6(2):121-128.
  • 3LAWHERN V,HAIRSTON W D,MCDOWELL K,et al.Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J].J Neurosci Methods,2012,208(2):181-189.
  • 4KEIRN Z A,AUNON J I.A new mode of communication between man and his surroundings[J].IEEE Trans Biomed Eng,1990,37(12);1209-1214.
  • 5HU X,NENOV V.Multivariate AR modeling of electromyography for the classification of upper arm movements[J].Clin Neurophysiol,2004,115(6):1276-1287.
  • 6薛建中,郑崇勋,闫相国.快速多变量自回归模型的意识任务的特征提取与分类[J].西安交通大学学报,2003,37(8):861-864. 被引量:5
  • 7王江,徐桂芝,王磊,张惠源.基于多通道自适应自回归模型脑-机接口系统特征的提取[J].中国组织工程研究与临床康复,2011,15(48):9007-9010. 被引量:3
  • 8ZHAO C L,ZHENG C X,ZHAO M,et al.Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic[J].Expert Syst Appl, 2011,38(3):1859-1865.
  • 9王宁,魏玲,李颖洁.基于格兰杰因果分析情绪认知过程中alpha脑电特性[J].生物医学工程学杂志,2012,29(6):1021-1026. 被引量:4
  • 10ANDERSON C W,STOLZ E A,SHAMSUNDER S.Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[J].IEEE Trans Biomed Eng,1998,45(3):277-286.

二级参考文献37

  • 1黄宇霞,罗跃嘉.情绪的ERP研究新进展(英文)[J].中国科学院研究生院学报,2004,21(4):433-440. 被引量:7
  • 2李庆杨 易大义 等.现代数值分析[M].北京:高等教育出版社,1995..
  • 3Wolpaw JR,Birbaumer N,McFarland DJ,Pfurtscheller G.Brian-computer interfaces for communication and control.Clin Neuroph.2002;113:767-791.
  • 4Wolpaw JR,Birbaumer N,Heetderks WJ,et al.Brain-computer interface technology:a review of the first international meeting.IEEE Trans Rehabil Eng.2000;8(2):164-173.
  • 5Birbaumer N.Breaking the silence:brain-computer interfaces (BCI) for communication and motor control.Psychophysiology.2006;43(6):517-532.
  • 6Wolpaw JR,Loeb GE,Allison BZ.BCI Meeting 2005:workshop on signals and recording methods.IEEE Trans Neural Syst Rehabil Eng.2006;14(2):138-141.
  • 7Vaughan TM,McFarland DJ,Schalk G.The Wadsworth BCI Research and Development Program:at home with BCI.IEEE Trans Neural Syst Rehabil Eng.2006;14(2):229-233.
  • 8Middendorf M,McMillan G,Calhoun G.Brain-computer interfaces based on the steady-state visual-evoked response.IEEE Trans Rehabil Eng.2000;8(2):211-214.
  • 9Mellinger J,Schalk G,Braun C.An MEG-based brain-computer interface (BCI).Neuroimage.2007;36(3):581-593.
  • 10Moore MM.Real-world applications for brain-computer interface technology.IEEE Trans Neural Syst Rehabil Eng.2003;11(2):162-165.

共引文献17

同被引文献34

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部