期刊文献+

基于格兰杰因果分析情绪认知过程中alpha脑电特性 被引量:4

Analysis of Characteristics of alpha Electroencephalogram during the Interaction Between Emotion and Cognition Based on Granger Causality
原文传递
导出
摘要 探索脑功能网络是揭示大脑处理情绪时潜在神经联系的重要手段,基于多变量自回归(MVAR)模型的格兰杰因果(GC)方法可分析各区域的因果特性及相互影响,现已被广泛用于脑网络的研究。本文记录了13名正常被试(6男,7女)在进行空间表情搜索任务时的脑电(EEG),通过GC方法建立特定认知阶段内不同节律下大脑区域内的因果联系模型。结果发现:(1)所有负性表情引起的时间显著性大于正性表情。(2)在alpha段,刺激出现后100~200ms的EEG信号情绪显著性最大,300~400ms和700~800ms次之。(3)alpha频段的因果调制顺序为后部脑区调制前部脑区。(4)额叶和枕区作为关键脑区参与了大脑的因果调制。(5)信息加工时存在负性偏向性,尤其表现在负性表情刺激后0~100ms。 Studying the functional network during the interaction between emotion and cognition is an important way to reveal the underlying neural connections in the brain and nowadays, it has become a hot topic in cognitive neuro science. Granger causality (GC), based on multivariate autoregressive (MVAR) model, and being able to be used to analyse causal characteristic of brain regions has been widely used in electroeneephalography (EEG) in eventrelated paradigms research. In this study, we recorded the EEGs from 13 normal subjects (6 males and 7 females) during e motional face search task. We utilized Granger causality to establish a causal model of different brain areas under dif ferent rhythms at specific stages of cognition, and then convinced the brain dynamic network topological properties in the process of emotion and cognition. Therefore, we concluded that in the alpha band, (1) negative emotion face in duced larger causal effects than positive ones; (2) 100-200ms emotional signal was the most prominent ones while 300-400ms and 700-800ms would take the second place; (3) The rear brain region modulated the front in the process of causal modulation; (4) The frontal and pillow area involved in the brain causal modulation as a key brain area; and (5) Negative partiality existed in the information processing, especially during 0-100ms after the negative expression stimulation.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第6期1021-1026,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61171032)
关键词 情绪 格兰杰因果 事件相关脑电 ALPHA Emotion Granger causality (GC) Event-related electroencephalograph alpha
  • 相关文献

参考文献1

二级参考文献37

  • 1[1]Dietrich D E, Emrich H M, Waller C,et al. Emotion/cognition-coupling in word recognition memory of depressive patients: an event-related potential study. Psychiatry Research, 2000, 96:15-29
  • 2[2]Higashima M, Nagasawa T, Kawasaki Y,et al. Auditory P300 amplitude as a state marker for positive symptoms in schizophrenia: crosssectional and retrospective longitudinal studies. Schizophrenia Research, 2003, 59 (2 -3 ) :147-157
  • 3[3]Streit M, Wolwer R, Ihl R,et al. EEG correlates of facial affect recognition and visual object recognition in schizophrenia. Biological Psychiatry, 1997, 42:1-297
  • 4[4]Campanella S, Gaspard C, Debatisse D,et al. Discrimination of emotional facial expressions in a visual oddball task: an ERP study. Biological Psychology, 2002, 59:171-186
  • 5[5]Miller G A. How we think about cognition, emotion, and biology in psychopathology. Psychophysiology, 1995, 33:615-628
  • 6[6]Morita Y, Morita K, Yamamoto M. Effects of facial affect recognition on the auditory P300 in healthy subjects. Neuroscience Research,2001,41:89-95
  • 7[7]Ethan H, Borod J C, Tenke C E,et al. Identification of emotion in a dichotic listening task: event-related brain potential and behavioral findings. Brain and Cognition, 1998, 37:286-307
  • 8[8]Bensafi M, Pierson A, Rouby C, Farget V, Bertrand B, Vigouroux M, Jouvent R, Holley A. Modulation of visual event-related potentials by emotional offactory stimuli. Neurophysiologie Clinique, 2002, 32:335-342
  • 9[9]Leiphart J, Resenfeld J P, Gabrieli J D. Event-related potential correlates of implicit priming and explicit memory task. International Journal of Psychophysiology, 1993, 15 (3):197-206
  • 10[10]Wei J H, Pan R T, Jin H Y. Relativity between extrication wave of mental load (EML) and emotion. Scientia Sinica (Series B), 1993,6 (10): 1233-1240

共引文献6

同被引文献41

  • 1杨国愉,冯正直,秦爱粉,刘云波,汪涛,廖雅琴,王江澜,刘俊丽.高原训练期间军人认知功能的追踪研究[J].第四军医大学学报,2005,26(3):272-275. 被引量:39
  • 2MCFARLAND D J,WOLPAW J R.Brain-computer interfaces for communication and control[J].Commun ACM,2011,54(5):60-66.
  • 3MOUSAVI E A,MALLER J J,FITZGERALD P B,et al.Wavelet common spatial pattern in asynchronous offline brain computer interfaces[J].Biomed Signal Process Contr,2011,6(2):121-128.
  • 4LAWHERN V,HAIRSTON W D,MCDOWELL K,et al.Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J].J Neurosci Methods,2012,208(2):181-189.
  • 5KEIRN Z A,AUNON J I.A new mode of communication between man and his surroundings[J].IEEE Trans Biomed Eng,1990,37(12);1209-1214.
  • 6HU X,NENOV V.Multivariate AR modeling of electromyography for the classification of upper arm movements[J].Clin Neurophysiol,2004,115(6):1276-1287.
  • 7ZHAO C L,ZHENG C X,ZHAO M,et al.Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic[J].Expert Syst Appl, 2011,38(3):1859-1865.
  • 8ANDERSON C W,STOLZ E A,SHAMSUNDER S.Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[J].IEEE Trans Biomed Eng,1998,45(3):277-286.
  • 9MORF M,VIEIRA A,LEE D T L,et al.Recursive multichannel maximum entropy spectral estimation[J].IEEE Trans Geosci Electr,1978,16(2):85-94.
  • 10LU H,PLATANIOTIS K N,VENETSANOPOULOS A N.MPCA:multilinear principal component analysis of tensor objects[J],IEEE Trans Neural Netw,2008,19(1):18-39.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部