摘要
Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.
Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.
基金
supported by the National Natural Science Foundation of China(Grant No.61078057)
the Natural Science Foundation of Shannxi Province,China(Grant No.2011GM6013)
the Foundation for Fundamental Research of Northwestern Polytechnical University of China(Grant Nos.JC20110270 and 3102014JCQ01029)
the Open Project of Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education,Lanzhou University,China(Grant Nos.LZUMMM2013001 and LZUMMM2014007)
the Scholarship Fund of China(Grant No.201303070058)