期刊文献+

移动目标位姿同步跟踪技术研究 被引量:2

Synchronized Position and Pose Tracking Technology for Mobile Target
在线阅读 下载PDF
导出
摘要 以农业车辆或者采矿装备等移动目标为对象,以实现移动目标在未知环境中自主运动为目的,进行了基于三轴加速度和陀螺仪的移动目标位姿同步跟踪研究。首先建立移动目标运动学模型,探寻姿态角与位置解算的耦合规律,利用加速度和角加速度进行位姿导航参数计算,并在搭建的定位原型系统上对所提定位定姿算法进行验证。实验结果表明,静态测试时横滚角φ、俯仰角β及偏航角θ的误差分别为0.33°、0.26°和0.38°,动态测试时姿态角跟踪误差分别为1.01°、0.64°和0.83°;静态测试时三维加速度下的平均位置误差分别为0.76、0.52和0.56 m,利用零速校正消除了运行时的累计误差,能够对移动目标运动轨迹进行有效跟踪。 Taking mobile targets,such as agricultural vehicles and mining equipments,as the research object,the position and pose tracking technology is proposed under three-axis accelerometer and threeaxis gyroscope aimed at realizing autonomic movement in unknown environment.Firstly,dynamic characteristics and kinematic model are built.Secondly,using three-axis accelerometer,the position and pose of mobile target are resolved based on the multi-parameters.Then,a prototype system for verifying the proposed position and pose method is developed.The estimation results indicate that the mean errors of roll,pitch and yaw are 0.33°,0.26° and 0.38° respectively under static state,while the dynamic errors of pose detection are 1.01°,0.64° and 0.83° respectively.The mean errors of position estimation are 0.76,0.52 and 0.56 m respectively under static state.Meanwhile,the accumulation error caused by three-axis accelerometer can be eliminated under the aid of zero-velocity update,which can effectively track the trajectory.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第10期47-52,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家高技术研究发展计划(863计划)资助项目(2013AA06A411) 江苏高校优势学科建设工程资助项目 江苏省研究生培养创新工程资助项目(KYLX_1374)
关键词 移动目标 定位定姿 自主跟踪 精度分析 Mobile target Position and pose Self-tracking technology Accuracy analysis
  • 相关文献

参考文献19

二级参考文献205

共引文献532

同被引文献27

  • 1汤传业,陈熙源,李博天.基于新的圆锥补偿结构的姿态算法(英文)[J].中国惯性技术学报,2014,12(5):580-586. 被引量:3
  • 2李建平,林妙玲.自动导航技术在农业工程中的应用研究进展[J].农业工程学报,2006,22(9):232-236. 被引量:59
  • 3沈乐君,柯遵渝,程小平.球类比赛中运动员的实时跟踪[J].体育科学,2007,27(1):64-67. 被引量:6
  • 4周建军,王秀,张睿,等.农机车载GPS和DR组合导航系统定位方法[J].农业机械学报,2013,43(增刊1):263—265.
  • 5Wu Y X, Pan X F. Velocity/position integration formula part II: application to strapdown inertial navigation computation [ J ]. IEEE Transactions on Aerospace and Electronic Systems,2013,49(2) :1024 -1034.
  • 6Zheng B, Yang J F. Vibration analysis of base structure on SINS using PZT actuators [ J ]. Turkish Journal of Electrical Engineering and Computer Sciences, 2012,20 (6) :901 - 913.
  • 7Suh Y S. Inertial sensor-based smoother for gait analysis [ J]. Sensors, 2014,14(12) :24338 -24357.
  • 8Li Q, Ben Y Y, Zhu Z J, et al. A ground fine alignment of strapdown INS under a vibrating base [ J ]. The Journal of Navigation, 2013,66( 1 ) :49 -63.
  • 9Savage P G. Coning algorithm design by explicit frequency shaping [ J]. Journal of Guidance Control and Dynamics, 2010, 33(4) :1123 - 1132.
  • 10Ignagni M. Optimal sculling and coning algorithms for analog-sensor systems [ J ]. Journal of Guidance Control and Dynamics, 2012,35 (3) :851 - 860.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部