摘要
在本篇短文中,我们证明了定理 设G为p^n阶的非Abel p-群,|G/φ(G)|=p^(?) ,Z(G)是p^(?)阶初等Abel群,r≥n-2/s,则|G|||AutG|.
In this paper, the author proves:Theorem If G is a non-Abelian p-group with order pn, |G/Φ(G) | =pn, Z(G)is an elementary Abelian group with order pr, r≥an-2/s, then |G| | Aut G|.Corrallory If G is a non-Abelian p-group with Z(G), Φ(G), and Z(G) is an elementary Abelian group, then |G|||AutG|.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1991年第2期149-152,共4页
Journal of Southwest China Normal University(Natural Science Edition)