摘要
本文中用Kneser's定理得到下列结论一个新的简单证法.设G为初等Abel p-群(运算用加法),S={a1,a2,…,an)为G的一个n项不含有零然的元素列(元素可允许重复),∣s∣=n=pm-1+p-2,,其中p为素数,若对G的任意子群H,S最多含有∣H∣-1项,则:(1)当m=2时,∑0(S)=G;(2)当m 3时,∑(S)=G.特别有(1)Olson'猜想r(ZpZp)=2p-2;(2)r(mZp)=c(mZp)=pm-1+p-2,m 3.
If G is a elementary abelian p--group(additively),and p is the prime, |S| =n=P^m-1 +P-2,If s= (a1 ,a2,… ,an) ,be a sequence of G(ai≠0) ,repetition allowed)satisfying that any subgroup H of G contains at most |H|-1 terms of S,(1)if m=2时,∑^0(S)=G;(2)if m≥3时,∑(S)=G,Moreover ,we have the flowing results [CPE1.CPE2]( 1 )Olson'conjecure r(Zp+Zp)=2p-2;(2)r(+^mZp)=c(+^m Zp)=p^m-1 +p-2,m≥3.
出处
《数学理论与应用》
2007年第1期84-87,共4页
Mathematical Theory and Applications