期刊文献+

基于深度学习的人脸识别技术在电力巡检机器人中的应用研究 被引量:4

Application of face recognition technology based on deep learning in electric power inspection robot
原文传递
导出
摘要 人脸识别技术是提取及比对脸部特征信息进而鉴别身份的生物识别技术。针对电力巡检机器人视频监控中的身份鉴别问题,本文采用深度学习技术中最前沿的卷积神经网络算法作为人脸识别的核心算法,重点研究卷积神经网络在人脸识别中的实现过程,进而完成实验室的姿态变化人脸检测性能测试以及现场环境下的电力巡检机器人实时人脸识别测试。试验结果显示卷积神经网络算法可以准确完成身份鉴别,极大地提高了变电站中电力巡检机器人的人脸识别能力与安防能力。 Face recognition technology is a biometric technology that extracts and compares facial feature information to identify the identity. For the identification of power patrol robots in video surveillance,this paper uses the most advanced convolutional neural network algorithm in deep learning technology as the core algorithm of face recognition,focusing on the realization process of convolutional neural network in face recognition. Then complete the change of the posture of the face detection performance test and real-time face recognition test of the power inspection robot in the field environment. The test results show that the convolutional neural network algorithm can accurately complete the identity authentication,which greatly improves the face recognition ability and security capability of the power inspection robot in the substation.
作者 马力 王致 张丹 洪永健 王天安 MA Li;WANG Zhi;ZHANG Dan;HONG Yongjian;WANG Tianan(Yunnan Power Grid Co.,Ltd.Kunming Power Supply Bureau,kunming Yunnan,650011)
机构地区 昆明供电局
出处 《自动化与仪器仪表》 2019年第2期36-38,共3页 Automation & Instrumentation
关键词 人脸识别 卷积神经网络 巡检机器人 安防 face recognition convolutional neural network inspection robot security
  • 相关文献

参考文献14

二级参考文献81

  • 1王雪立,关永,韩相军.基于DM642的嵌入式人脸检测与追踪系统研究[J].微计算机信息,2006(01Z):54-56. 被引量:3
  • 2姜荣,董军宇.人脸识别系统及其在现实生活中的应用[J].长春师范学院学报(自然科学版),2006,25(1):52-54. 被引量:7
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4Bengio Y, et al. Greedy Layer-Wise Training of Deep Networks [ C ]// NIPS ,2007.
  • 5Arel I,et al. Deep Machine Learning-A New Frontier in Artificial In- telligence Research [ J ]. Computational Intelligence Magazine , IEEE, 2010,5(1) :13 -18.
  • 6Hinton G E ,et al. A Fast Learning Algorithm for Deep Belief Nets[ J]. Neural Computation ,2006,18 : 1527 - 1554.
  • 7Pouhney C, et al. Efficient Learning of Sparse Representations with an Energy-Based Model[ M ]. Presented at the NIPS, New York ,2006.
  • 8Dahl G,et al. Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition[ J]. IEEE Transactions on Audi- o, Speech, and Language Processing,2011,20:30 - 42.
  • 9Lti G. Recognition of multi-fontstyle characters based on Convolutional neural network [ C ]//Presented at the Computational Intelligence and Design ( ISCID), HANGZHOU ,2011.
  • 10Ackley H ,et aL A learning algorithm for Boltzmann machines[ J]. Cog- nitive Science, 1985,9 : 147 - 169.

共引文献282

同被引文献36

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部