摘要
利用正则化关系式处理了声学边界元方法中的超奇异数值积分。此正则化关系式经过数值离散化后,复合积分算子所对应的离散化系数矩阵被转化为构成该复合积分算子的两个积分算子所对应的离散化系数矩阵的乘积。从而形成了一种全新的处理超奇异数值积分的方法。为验证这一理论的正确性,文中给出了振荡球和脉动球声辐射数值算例。计算结果表明此方法效率高且数值解与解析解符合很好。
The hyper-singular numerical integral occurred in the acoustic boundary element method has been dealt with using a regularization formulation. When the regularization formulation is descretized using boundary elements, the influence matrix corresponding to a composite integral Operator is proved to be just the product of the two influence matrices corresponding to the two integral operators which construct the composite integral operator. So a completely new approach to deal with hypersingular numerical integral is made. To test the validity of this approach, oscillating sphere radiation and pulsating sphere radiation are calculated. As a result, the numerical values agree very well with the corresponding analytical solution. And most of all, the calculation speed is very high.
出处
《声学学报》
EI
CSCD
北大核心
2001年第3期282-286,共5页
Acta Acustica
基金
美国Emerson电气公司资助博士论文研究项目