期刊文献+

基于学习的多帧图像超分辨率重建技术研究 被引量:1

在线阅读 下载PDF
导出
摘要 由于可用信息不足,多帧图像超分辨率重建问题常常是一个不适定问题。为解这一问题,需要额外的图像先验知识。本文提出一个基于学习的多帧图像超分辨率重建算法,该方法从训练图像集中学习先验知识。实验表明本文方法要优于传统基于最大后验概率估计的超分辨率重建算法。
出处 《福建电脑》 2014年第4期79-81,共3页 Journal of Fujian Computer
  • 相关文献

参考文献11

  • 1S.Borman and R.L.Strevenson.Super-resolution from image sequences-A review[J] .in Proc.1998 Midwest Symp.Circuits and Systems,1999,pp.374-378.
  • 2J.Tian and K.K.Ma,A survey on super-resolution imaging.Signal,Image and Video Processing[J] ,2011,5(3),pp.329-342.
  • 3S.Farsiu,M.D.Robinson,M.Elad and P.Milanfar.Fast and Robust Multiframe Super Resolution[J] .IEEE Trans.Image Process,2004,pp.1327-1344.
  • 4W.T.Freeman,E.C.Pasztor,Leaning low-level vision[J] .International Journal of Compute Vision,vol 40,no.1,pp.25-47,2000.
  • 5W.T.Freeman,T.R.Jones and E.C.Paszotor,Example-based super-resolution[J] .IEEE Computer Graphics and Applications,vol.22,no.2,pp.56-65,2002.
  • 6J.Sun,N.N.Zheng,H.Tao,and H.Shum,Image hallucination with primal sketch priors[C] ,in IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Vol.2,pp.729-736,2003.
  • 7H.Chang,D.-Y.Yeung,and Y.Xiong,Super-resolution through neighbor embedding[C] .In IEEE Conference on Computer Vision and Pattern Classification (CVPR),Vol.1,pp.275-282,2004.
  • 8J.Yang,J.Wright,T.Huang,Y.Ma.Image Super-Resolution Via sparse Representation[J] ,IEEE Transactions on Image Processing,2010,19(11):2861-2873.
  • 9李民,李世华,李小文,乐翔.非局部联合稀疏近似的超分辨率重建算法[J].电子与信息学报,2011,33(6):1407-1412. 被引量:7
  • 10路锦正,张启衡,徐智勇,彭真明.光滑逼近超完备稀疏表示的图像超分辨率重构[J].光电工程,2012,39(2):123-129. 被引量:3

二级参考文献27

  • 1Freeman W T, Jones T R, and Pasztor E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
  • 2Chang H, Yeung D-Y, and Xiong Y. Super-resolution through neighbor embedding[C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 2004, 2: 275-282.
  • 3Yang J, Wright J, and Huang T, et al.. Image Super- resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861 2873.
  • 4Ebrahimi M and Vrscay E R. Solving the inverse problem of image zooming using "self-examples"[C]. The International Conference on Image Analysis and Recognition (ICIAR), Montreal, Canada, 2007: 117-130.
  • 5Mairal J, Bach F, and Ponce J, et al.. Non-local sparse models for image restoration[C]. The IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, 2009:2272 2279.
  • 6Tropp J A and Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 948-958.
  • 7Tropp J A, Gilbert A C, and Strauss M J. Algorithms for simultaneous sparse approximation, part I: greedy pursuit [J]. Signal Processing, Sparse Approximations in Signal and Image Processing, 2006, 86(3): 572 588.
  • 8Rubinstein R, Bruckstein A M, and Elad M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 1045-1057.
  • 9Mairal J, Bach F, and Ponce J, et al.. Online dictionary learning for sparse coding[C]. International Conference on Machine Learning (ICML), Montreal, Canada, 2009: 689 696.
  • 10Mairal J, Elad M, and Sapiro G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53-69.

共引文献8

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部