期刊文献+

基于小波变换的低频分量图像检索研究 被引量:1

A STUDY OF IMAGE RETRIEVING BASED ON WAVELET TRANSFORM OF LOWER FREQUENCY PART
在线阅读 下载PDF
导出
摘要 图像检索是图像数据库的最基本功能,传统检索技术对图像数据库来说存在很大的局限性,图像的检索应采用基于图像内容本身的检索方式,目前流行的各种图像匹配技术主要针对特征明显的图像,需要图像先验知识,缺乏广泛性。分析了传统的模板匹配技术,采用小波变换技术抽取图像低频分量为逻辑对象,利用改进的模板匹配技术进行检索,实验结果表明可大大减少计算量,提高检索效率。 Image searching is the most essential function of the image database. Traditional database searching techniques are very limited for image database. Image Searching should be based on image content, but current various kinds of image matching techniques are mostly suit- able for defferent kinds of images' features, which are lack of Extensiveness. This paper analyzed traditional template matching technique, and use wavelet to get lower frequency of image as logic object, and then matching images with improved template matching technique, thus decrease calculating greatly after expriments,
作者 曾宪文
出处 《计算机应用与软件》 CSCD 北大核心 2007年第1期129-131,共3页 Computer Applications and Software
关键词 小波变换 低频 图像检索 模板匹配 Wavelet transform Lower frequency Image searching Template matching
  • 相关文献

参考文献5

  • 1徐淑平,洪亲.基于小波变换的图像检索[J].计算机与现代化,2005(11):12-15. 被引量:1
  • 2Sagarmay Deb,Yanchun Zhang,An overview of content-based image retrieval techniques Advanced Information Networking and Applications,2004.AINA 2004.18th International Conference on,Volume:1,29-31 March 2004 pp.59~64 Vol.1.
  • 3秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 4刘洞波,李正明,陈进,孙俊.一种基于小波压缩的图像检索系统的研究[J].计算机工程与设计,2004,25(6):921-923. 被引量:11
  • 5French J.C.,Chapin A.C.,Martin W.N.,An application of multiple viewpoints to content-based image retrieval Digital Libraries,2003.Proceedings.2003 Joint Conference on,27~31 May 2003 pp.128~130.

二级参考文献7

  • 1VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Said A, Pearlman W A. A new,fast and efficient image codec based on set partitioning in hierarchical trees [J].IEEE Trans on CSVT,1996,6(6):243-250.
  • 3Martucci S A. A zerotree wavelet video coder[J]. IEEE Trans on CSVT,1997,7(2):109-118.
  • 4Syed Y F, Ra K R. Scalable low bit rate coding using an coder [C]. Proc.Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove,CA, 1999. 24-27.
  • 5Xiang Sean Zhou ,Thomas S Huang. CBIR:From low-level features to high-level semantics[A]. Proc. SPIE Image and Video Communication and Processing[C].2000.
  • 6黄祥林,沈兰荪.基于内容的图像检索技术研究[J].电子学报,2002,30(7):1065-1071. 被引量:101
  • 7徐杰,施鹏飞.基于内容的图象检索技术[J].中国图象图形学报(A辑),2003,8(9):977-983. 被引量:33

共引文献72

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部