摘要
主要研究一类带有时滞的无限区间分数阶变分问题,讨论的目标泛函表达式为其定义在C^1[a—T,+∞]上,并且T>0,α∈(0,1),_a^CD_x~α(x)在{a,+∞}存在且连续.利用分数微积分的性质,得到了目标泛函取最优时的Euler-Lagrange方程和横截条件,并通过两个例子验证结果的有效性.
In this paper with delay is investigated a class of infinite-horizon fractional variational problems The cost functional is given by the expression
where J(y) is defined on C1[a-T,+∞],τ〉0,α∈(0,1),such that Ca CDxα(x) exists and is continuous on {a,+∞}The Euler-Lagrange equation and the transversality conditions are obtained by using the properties of fractional calculus. At last, two examples are presented to show the effectiveness of the results.
出处
《系统科学与数学》
CSCD
北大核心
2014年第5期612-619,共8页
Journal of Systems Science and Mathematical Sciences
基金
教育部高等学校博士点基金(20134219120003)
湖北省自然科学重点基金(2013CFA131)
冶金工业过程系统科学湖北省重点实验室基金(z201302)资助课题
关键词
分数阶微积分
变分问题
时滞
无穷区间.
Fractional calculus, variational problem, delay, infinite-horizon.