期刊文献+

一类带时滞的无限区间分数阶变分问题

A CLASS OF INFINITE-HORIZON FRACTIONAL VARIATIONAL PROBLEMS WITH DELAY
原文传递
导出
摘要 主要研究一类带有时滞的无限区间分数阶变分问题,讨论的目标泛函表达式为其定义在C^1[a—T,+∞]上,并且T>0,α∈(0,1),_a^CD_x~α(x)在{a,+∞}存在且连续.利用分数微积分的性质,得到了目标泛函取最优时的Euler-Lagrange方程和横截条件,并通过两个例子验证结果的有效性. In this paper with delay is investigated a class of infinite-horizon fractional variational problems The cost functional is given by the expression where J(y) is defined on C1[a-T,+∞],τ〉0,α∈(0,1),such that Ca CDxα(x) exists and is continuous on {a,+∞}The Euler-Lagrange equation and the transversality conditions are obtained by using the properties of fractional calculus. At last, two examples are presented to show the effectiveness of the results.
出处 《系统科学与数学》 CSCD 北大核心 2014年第5期612-619,共8页 Journal of Systems Science and Mathematical Sciences
基金 教育部高等学校博士点基金(20134219120003) 湖北省自然科学重点基金(2013CFA131) 冶金工业过程系统科学湖北省重点实验室基金(z201302)资助课题
关键词 分数阶微积分 变分问题 时滞 无穷区间. Fractional calculus, variational problem, delay, infinite-horizon.
  • 相关文献

参考文献12

  • 1Klimek M. Fractional sequential mechanics-models with symmetric fractional derivative. Czech. J. Phys., 2001, 51(12): 1348-1354.
  • 2Klimek M. Stationary conservation laws for fractional differential equations with variable coeffi- cients. J. Phys. A, Math. Gen., 2002, 34(31): 6675-6693.
  • 3Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E, 1996, 53(2): 1890-1899. .
  • 4Riewe F. Mechanics with fractional derivatives. Phys. Rev. E, 1997, 55(3): 3582-3592.
  • 5Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 2002, 272(1): 368-379.
  • 6Almeida R, Pooseh S, Torres D F M. Fractional variational problems depending on indefinite integrals. Nonlinear Anal., 2012, 75(3): 1009-1025.
  • 7Baleanu D, Maaraba T, Jarad F. Fractional variational principles with delay. J. Phys. A, 2008, 41(31): 315-403.
  • 8Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Dierential Equations. North-Holland Mathematics Studies, 204, Amsterdam: Elsevier, 2006.
  • 9Miller K S, Ross B. An introduction to the Fractional Calculus and Fractional Dierential Equa- tions. New York: Wiley-Interscience Publication, Wiley, 1993.
  • 10Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives. Translated from the 1987 Russian original, Yverdon: Gordon and Breach, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部