期刊文献+

含高阶导数积分型性能泛函极值存在的必要条件 被引量:1

Necessary Conditions for Extreme Value Existing for Integral Type Performance Functional with Higher Derivatives
在线阅读 下载PDF
导出
摘要 对性能泛函求极值用欧拉(Euler)方程和横截条件,现有文献仅讨论性能泛函形式为J(x)=∫tft0L(x,x,t)dt,即状态量x最高为一阶导数的Euler方程和横截条件.用数学归纳法推导出状态变量x为高阶导数的性能泛函极值的必要条件,并以二阶导数为例,用Matlab进行了极值求解. Euler equation and transversality condition are used to solve the extreme value for performancefunctional. However,only the form of performance functional J(x)=∫t0 t1L(x,x,t)dtdt is discussed by presentliteratures,which means that the Euler equation and transversality condition contain the first derivative of the state variable x. By mathematical induction, the Euler equation and transversality condition for the higher derivatives of the state variable x as the necessary conditions of the extreme value existing were deduced. Taking the second derivative as an example,the extreme value was resolved by using Matlab.
出处 《上海工程技术大学学报》 CAS 2012年第4期374-377,共4页 Journal of Shanghai University of Engineering Science
关键词 最优控制 积分型性能泛函 高阶导数 极值 数学归纳法 optimal control integral type performance functional higher derivative extreme value mathematical induction
  • 相关文献

参考文献6

  • 1Kirk D E. Optimal Control Theory:An Introduction[M].New York:Dover Publications,Inc,2004.
  • 2Evans L C. An Introduction to Mathematical Optimal Control Theory[M].Berkeley:University of California Press,2010.
  • 3Lewis F L,Vrabie D,Syrmos V L. Optimal Control[M].New York:John Wiley and Sons,Inc,2012.
  • 4李传江;马广富.最优控制[M]北京:科学出版社,2011.
  • 5Wikipedia. Mathematical Induction[EB/OL].http://en.wikipedia.org/wiki/Mat hemat ical_induction,2012.
  • 6Gunderson D S. Handbook of Mathematical Induction:Theory and Applications Discrete Mathematics and Its Applications[M].London:Chapman and Hall,2010.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部