期刊文献+

基于核主成分分析的异常轨迹检测方法 被引量:11

Trajectory outlier detection method based on kernel principal component analysis
在线阅读 下载PDF
导出
摘要 针对现有算法不能有效应用于多因素轨迹异常检测的问题,提出基于核主成分分析(KPCA)的异常轨迹检测方法。首先,为了改善轨迹特征提取的效果,采用KPCA对轨迹数据进行空间转换,将非线性空间转换到高维线性空间;其次,为了提高异常检测的准确率,采用一类支持向量机对轨迹特征数据进行无监督学习和预测;最终检测出具有异常行为的轨迹。采用大西洋飓风数据对算法进行测试,实验结果表明,该算法能够有效提取出轨迹特征,并且与同类算法相比,该算法在多因素轨迹异常检测方面具有更好的检测效果。 In view of the fact that the existing algorithms cannot effectively be applied to multi-factor trajectory outlier detection, this paper proposed a new method named TOD-KPCA (Trajectory Outlier Detection method based on Kernel Principal Component Analysis). Firstly, in order to enhance the effect of trajectory feature extraction, the method used KPCA to do the space transformation for trajectories and converted nonlinear space to a high dimension linear space. Furthermore, in order to improve the accuracy of outlier detection, the method used one-class Support Vector Machine (SVM) to do unsupervised learning and prediction with trajectory feature data. Finally, the method detected those trajectories with abnormal behavior. The proposed algorithm was tested on the Atlantic hurricane data. The experimental results show that the proposed algorithm can effectively extract trajectory features, and compared with the same algorithm, the proposed algorithm has better detection results in terms of multi-factor trajectory outlier detection.
出处 《计算机应用》 CSCD 北大核心 2014年第7期2107-2110,共4页 journal of Computer Applications
基金 中央高校基本科研业务费专项资金资助项目(2013XK10) 教育部博士点基金资助项目(20110095110010) 江苏省自然科学基金资助项目(BK20130208)
关键词 异常轨迹检测 核主成分分析 高维特征空间 一类支持向量机 TRAjectory Outlier Detection (TRAOD) Kernel Principal Component Analysis (KPCA) high-dimensionalfeature space One-Class Support Vector Machine ( One-Class SVM)
  • 相关文献

参考文献14

  • 1International Telecommunication Union.World Telecommunication/ ICT development report 2010[EB/OL].[2013-10-12].http://www.itu.int/ITU-D/ict/publications/wtdr_10/index.html.
  • 2LEE J G,HAN J,LI X.Trajectory outlier detection:A partitionand-detect framework[C]// ICDE2008:Proceedings of the IEEE 24th International Conference on Data Engineering.Piscataway:IEEE,2008:140-149.
  • 3刘良旭,乔少杰,刘宾,乐嘉锦,唐常杰.基于R-Tree的高效异常轨迹检测算法[J].软件学报,2009,20(9):2426-2435. 被引量:16
  • 4XIONG L,POCZOS B,SCHNEIDER J G,et al.Hierarchical probabilistic models for group anomaly detection[C]// AISTATS2011:Proceedings of the 4th International Conference on Artificial Intelligence and Statistics.Fort Lauderdale:Microtome Publishing,2011:789-797.
  • 5OLIVA J B.Anomaly detection and modeling of trajectories[D].Pittsburgh:Carnegie Mellon University,2012.
  • 6CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):326-331.
  • 7JAIN A,NANDAKUMAR K,ROSS A.Score normalization in multimodal biometric systems[J].Pattern Recognition,2005,38(12):2270-2285.
  • 8SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
  • 9BISHOP C M.Pattern recognition and machine learning[M].New York:Springer,2006.
  • 10韩旭里.对称三对角矩阵带位移的QL方法和QR方法的收敛性[J].高等学校计算数学学报,1995,17(2):145-149. 被引量:3

二级参考文献19

共引文献18

同被引文献73

  • 1蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:69
  • 2MAURYA K, SINGH M, JAIN N. Real time vehicle tracking system using GSM and GPS technology: an anti-theft tracking system [J]. International journal of electronics and computer science engineering, 2012, 1 (3) : 1103-1107.
  • 3CHITALIYA N G, TRIVEDI A I. Novel block matching algo- rithm using predictive motion vector for video object tracking based on color histogram [C]// Proceedings of 2011 IEEE Inter- national Conference on Electronics Computer Technology. Kan- yakumari: IEEE, 2011: 81-85.
  • 4BRADSK1 G R. Computer vision face tracking for use in a per- ceptual user interface [C]// Proceedings of 1998 IEEE Work- shop on Applications of Computer Vision. [S.I.]: IEEE, 1998: 214-219.
  • 5CHENG Y. Mean shift, mode seeking and clustering [J]. IEEE transactions on pattern analysis and machine intelligence, 1995, 17(8): 790-799.
  • 6LOWED G. Distinctive image features from scale invariant key points [J]. International journal of computer vision, 2004, 60 (2): 91-110.
  • 7PANCHAL P M, PANCHAL S R, SHAH S K. A comparison of sift and surf [J]. International journal of innovative research in computer and communication engineering, 2013, 1(2): 323- 327.
  • 8刘良旭,乔少杰,刘宾,乐嘉锦,唐常杰.基于R-Tree的高效异常轨迹检测算法[J].软件学报,2009,20(9):2426-2435. 被引量:16
  • 9曲琳,周凡,陈耀武.基于Hausdorff距离的视觉监控轨迹分类算法[J].吉林大学学报(工学版),2009,39(6):1618-1624. 被引量:8
  • 10陈斌,陈松灿,潘志松,李斌.异常检测综述[J].山东大学学报(工学版),2009,39(6):13-23. 被引量:44

引证文献11

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部