期刊文献+

Matlab神经网络工具箱BP算法比较 被引量:69

Comparison of BP Algorithms in Matlab NN Toolbox
在线阅读 下载PDF
导出
摘要 BP前馈网络,应用的最为广泛的神经网络,目前拥有许多算法。研究了Matlab神经网络工具箱提供的多种BP算法函数各自的优势和不足,以能在各种不同条件面对不同问题时选用更合适更快速的算法。在介绍了这些算法的基本原理的基础上,以一级倒立摆模型为例进行仿真研究。分别选用简单网络和复杂网络,并对学习步长做了改变,对比了各种BP算法在不同情况下的迭代次数和仿真时间,验证了新型BP算法的优势,得出了对简单网络和复杂网络应该如何选用BP算法的结论。 BP feed forward network, the most widely used neural network, has many algorithms at present. Advantages and disadvantages of various BP algorithms provided in Maflab neural network toolbox are studied so that people can choose more suitable and faster algorithms when different conditions and different problems are faced. After introducing the basic principle of these algorithms, study of simulation is carried out by using a single inverted pendulum as example. Choosing simple and complex nets respectively, and changing the learning steps, the iteration steps and simulation time of various BP algorithms in different conditions are compared. Advantages of new BP algorithms are validated. Advice on how to select BP function is given.
出处 《计算机仿真》 CSCD 2006年第5期142-144,共3页 Computer Simulation
关键词 冲经网络工具箱 反向传播算法 倒立摆 Neural network toolbox BP algorithm Inverted pendulum
  • 相关文献

参考文献3

二级参考文献27

  • 1程福雁,钟国民,李友善.二级倒立摆的参变量模糊控制[J].信息与控制,1995,24(3):189-192. 被引量:33
  • 2邢俊,王磊,戴冠中.用BP算法加速倒立摆的模糊控制过程[J].西北工业大学学报,1996,14(4):539-544. 被引量:1
  • 3Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 4Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 5Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 6Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 7Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.
  • 8Watrous R L. Learning algorithms for connectionist network: appli ed gradie nt methods of nonlinear optimization[A]. Proceedings of IEEE International Con ference on Neural Networks[c]. IEEE Press, New York, 1987.619~627.
  • 9Shar S,Palmieri F,Datum M.Optimal filtering algorithms f or fast l earning in feedforward neural networks[J]. Neural Networks,1992, 5(5):779~7 87.
  • 10Martin R,Heinrich B. A Direct Adaptive Method for F aster Backpropagation Learning: The RPROP Algorithrm[A]. Ruspini H. Proceedi ngs of the IEEE Interna t ional Conference on Neural Networks (ICNN)[C]. IEEE Press, New York. 1993.58 6~591.

共引文献231

同被引文献488

引证文献69

二级引证文献586

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部