期刊文献+

基于稀疏表示的概率子空间聚类人脸识别

Face Recognition Based on Probabilistic Subspace Clustering Via Sparse Representations
在线阅读 下载PDF
导出
摘要 针对子空间聚类应用中高达数以百万计信号的数据集合问题,为了实现快速聚类,提出了一种基于稀疏表示的概率子空间聚类算法。首先,每个信号由一个稀疏组合的基本元素(原子)表示,这些原子构成了字典矩阵的列;接着利用稀疏表示集推导出一个混合模式的原子和信号的共生矩阵;最后,通过共生矩阵的非负矩阵分解(NNMF)得到混合模式的组件,并根据最大似然(ML)准则估算每个信号的子空间。在YaleB人脸数据库上的实验结果表明,与其他几种最先进的方法相比,所提方法取得了较好的聚类精度。 To implement rapidly clustering for the very large signal collections problem in subspace clustering applications, a probabilistic subspace clustering algorithm based on sparse representations is proposed. Firstly, each signal is represented by a sparse combination of basis elements ( atoms), which form the columns of a dictionary matrix. Then, the set of sparse representations is utilized to derive the co-occurrences matrix of atoms and sig- nals, which is modeled as emerging from a mixture model. Finally, the components of the mixture model are obtained via a non-negative matrix factori- zation (NNMF) of the matrix, and the subspace of each signal is estimated according to a maximum-likelihood (ML) criterion. Experi- mental results on YaleB face database show that proposed method has better clustering accuracies comparing with several latest approaches
作者 彭波 谢丽萍
出处 《电视技术》 北大核心 2014年第11期173-176,共4页 Video Engineering
基金 苏州市科技计划支撑项目(020142010)
关键词 人脸识别 稀疏表示 概率子空间聚类 字典学习 非负矩阵分解 face recognition sparse representation probabilistic subspace clustering dictionary learning non-negative matrix factorization
  • 相关文献

参考文献15

二级参考文献60

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:116
  • 2王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:47
  • 3MacQueen J. Some methods for classification and analysis of multivariate observations[ D]. Berkeley, Calif. :University of California Press, 1967.
  • 4Huang Z. Extensions to the k- means algorithm for clustering large data sets with categorical values [ J ]. Data Mining and Knowledge Discovery, 1998(2) : 283 - 304.
  • 5Zucker S W. Relaxation Processes for Scene Labeling: Convergence,Speed, and Stability [J ]. IEEE trans, on SMC, 1978 (1):41-48.
  • 6Rcsenfeld A, Hummel R A, Zucker S W. Scene labeling by relaxation operations [ J ]. IEEE Trans. Syst. Man Cybem, 1976,6 : 420 - 453.
  • 7GARBAY C. Image Structure Representation and Proccssing A Discussion of Some Segmentation Methods in Cytology[ J ] IEEE Tran. on PAMI, 1986,8(2) : 140 - 146.
  • 8章毓晋.图像分割[M].北京:科学出版社,2001..
  • 9Kriegel H-P, Kroger P, Zimek A. Clustering high dimen sional data: A survey on subspace clustering, pattern based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 2009, 3(1): 1-58.
  • 10Moise G, Zimek A, Kroger P, Kriegel H-P, Sander J. Sub- space and projected clustering: Experimental evaluation and analysis. Knowledge and Information Systems, 2009, 21(3) : 299-326.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部