期刊文献+

基于低秩子空间恢复的联合稀疏表示人脸识别算法 被引量:45

Face Recognition of Joint Sparse Representation Based on Low-RankSubspace Recovery
在线阅读 下载PDF
导出
摘要 针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵D,将矩阵D分解为低秩矩阵A和稀疏误差矩阵E,其中A表示某类个体的‘干净’人脸,严格遵循子空间结构,E表示由阴影、反光、遮挡等引起的误差项,这些误差项破坏了人脸图像的低秩结构.然后用低秩矩阵A和误差矩阵E构造训练字典,将测试样本表示为低秩矩阵A和误差矩阵E的联合稀疏线性组合,利用这两部分的稀疏逼近计算残差,进行分类判别.实验证明该稀疏表示识别算法有效,识别精度得到了有效提高. In consideration of the cast shadows,specularities,occlusions and corruptions in the images that violate the low-rank structure,a novel recognition method of joint sparse representation based on low-rank subspace recovery is proposed.Firstly,using all training images of each class to form a data matrix D,we can decompose D as the sum of a low-rank matrix A and a sparse error matrix E,where A denotes the"clean"images which follow strictly the low-rank subspace structure and E accounts for cast shadows,specularities,occlusions and corruptions in the images that violate the low-rank structure.Then the test sample can be represented as the linear combination of dictionary which is composed of low rank matrix and error matrix,using the sparse approximation of this two parts calculates the residual which used for classification.Experiment results show that the algorithm is effective,and effectively improve the recognition accuracy.
作者 胡正平 李静
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第5期987-991,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071199) 河北省自然科学基金(No.F2010001297)
关键词 人脸识别 稀疏表示 联合稀疏 低秩子空间恢复 face recognition sparse representation joint sparse low-rank subspace recovery
  • 相关文献

参考文献14

  • 1Wright J,Yang A Y,Ma Yi,et al.Robust face recognition via sparse fepresentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 2Mao X Nguyen,Quang M Le,Vu Pham,Trung N Tran,Bac H Le.Multi-scale spaare representation for robust face recognition[A].Third International Conference on Knowledge and Systers Engineering[C].Hanoi:Viet nam,2011.195-199.
  • 3亓晓振,王庆.一种基于稀疏编码的多核学习图像分类方法[J].电子学报,2012,40(4):773-779. 被引量:31
  • 4Allen Yang,Arvind Ganesh,Shankar Sastry,Ma Yi.Fast L1minimization algorithms and an application in robust face recognition:a review[A].IEEE International Conference on Image Processing[C].Hong Kong 2010,1849-1852.
  • 5付宁,乔立岩,曹离.面向压缩感知的块稀疏度自适应迭代算法[J].电子学报,2011,39(A03):75-79. 被引量:15
  • 6Yang Meng,Zhang Lei.Gabor feature based sparse representation for face recognition with gabor occlusion dictionary[A].Europeon Conference on Computer Vision[C].Greece:Crete Heraklion,2010.448-461.
  • 7Zhang Nan,Yang Jian.K nearest neighbor based local sparse representation classifier[A].Proc of the 2010 Chinese Conference on Pattrn Recognition[C].China:Chongqing,2010.400-404.
  • 8Yang Meng,Zhang Lei,Jian Yang David Zhang.Robust sparse coding for face recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].United states:Colorado Springs,2011.625-632.
  • 9Wagner A,Wright J,Ganesh A,Zhou Zihan,Ma Yi.Towards a practical face recognition system:Robust registration and illumination by sparse representation[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].United states:Miami,FL,2009.597-604.
  • 10Vishal M Patel,Tao Wu,Soma Biswas,P Jonathon Phillips.Illumination robust dictionary-based face recognition[A].IEEE International Conference on Image Processing[C].Belgium:Brussels,2011.777-780.

二级参考文献27

  • 1E Candes, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006,52(2) :489 - 509.
  • 2D L Donoho. Compressed sensing[J]. IEEE Trans on Information Theory.2006,52(4) : 1289 - 1306.
  • 3E Candes, Terence Tao. Decoding by linear programming[ J ]. IEEE Trans on Information Theory, 2005, 51 ( 12): 4203 - 4215.
  • 4J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory, 2007,53 (12) : 4655 - 4666.
  • 5W Dai, O Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[ J]. IEEE. Trans on Information Theory, 2009,55(5) :2230 - 2249.
  • 6T T Do,L Gan,N Nguyen, T D Tran. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ A ]. In Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers [ C ]. Pacific Grove, California, 2008. 581 - 587.
  • 7R G Baraniuk, V Cevher, M F Duarte,C Hegde. Model-based compressive sensing [ J ]. IEEE, Trans on Information Theory, 2010,56(4) :1982 - 2001.
  • 8Y C Eldar,M Mishali. Robust recovery of signals from a structured union of subspaces[ J]. IEEE Trans on Information Theory,2009,55 (11) :5302 - 5316.
  • 9Y C Eldar, P Kuppinger, H Bolcskei. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery [J]. IEEE Trans on Signal Processing, 2010, 58 (6) : 3042 -3054.
  • 10M Lobo, L Vandenberghe, S Boyd. Applications of second-order cone programming [J]. Linear Algebra and its Applications, 1998,284( 1 - 3) : 193 - 228.

共引文献44

同被引文献370

引证文献45

二级引证文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部