期刊文献+

基于节点相似度的社团发现算法 被引量:3

New community detection algorithm based on node similarity
在线阅读 下载PDF
导出
摘要 对现有的社会网络社团发现算法进行研究,发现存在算法时间复杂度高、准确率低和没有充分利用节点属性信息等问题,提出了一种基于节点相似度的社团发现算法以解决这些问题。综合考虑图的拓扑结构和节点属性信息,结合构造属性扩展图的思想和基于结构情境相似度的思想得到节点的相似度,利用改进的K-means算法对所有节点进行聚类得到社团结构。编程实验结果表明,使用该算法得到的社团准确率较高,算法的时间复杂度为线性的,在带属性的数据集上和不带属性的数据集上的测试结果均验证了算法的有效性。 With study of the existing community detection algorithms in social networks, problems of high time complexity, low accuracy rate and the neglect of node attributes information are found, and a new community detection algorithm based on node similarity is presented to solve it. The algorithm takes composite factor of topological structure and node attributes into account. At first, the idea of constructing attribute augmented graph with attribute nodes gained from node attributes, and calculating nodes similarity based on graph structure are used together to gain node similarity. And then, an improved K-means algorithm based on node similarity is proposed to cluster nodes to detect implied communities. Through programming realization, higher accuracy rate and a linear time complexity are showed in final experimental results. The effectiveness of the algorithm is verified on an artificial two community dataset with attributes and two standard datasets without attributes.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第5期1688-1693,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61003311) 安徽高校省级自然科学研究基金项目(KJ2011A039)
关键词 社会网络 社团发现 图的拓扑结构 节点属性 属性扩展图 结构化相似度 social network community detection topological structure node attribute attribute augmented graph structural similarity
  • 相关文献

参考文献12

  • 1Han J,Kamber M,Pei J.Data mining:Concepts and techniques[M].3rd ed.San Francisco:Morgan Kaufmann Publishers,2011.
  • 2Tan PN,Steinbach M,Kumar V.Introduction to data mining[M].Beijing:Posts and Telecom Press,2011.
  • 3杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:215
  • 4Shiga M,Takigawa I,Mamitsuka H.A spectral clustering approach to optimally combining numerical vectors with a modular network[C]//NewYork:Proc of the 13th ACM SIGKDD Int'1 Conf on Knowledge Discovery and Data Mining,2007:647-656.
  • 5朱小虎,宋文军,王崇骏,谢俊元.用于社团发现的Girvan-Newman改进算法[J].计算机科学与探索,2010,4(12):1101-1108. 被引量:12
  • 6Yang B,Cheung W K,Liu J.Community mining from signed social networks[J].EEE Trans on Knowledge and Data Engineering,2007,19 (10):1333-1348.
  • 7Palla G,Farkas I J.Directed network modules[J].New Journal of Physics,2007,9 (6):186-207.
  • 8Ester M,Ge R,Gao B J,et al.Joint cluster analysis of attribute data and relationship data:The connected k-center problen[J].ACMTransKnowDiscov,2008,2 (2):1-35.
  • 9Zhou Y,Cheng H,Yu J X.Graph Clustering Based on Structural/Attribute Similarities[C]//Proceedings of the 35th International Conference on Very Large Data Bases,2009:718-729.
  • 10Xu X,Yuruk N,Feng Z,et al.SCAN:A structural clustering algorithm for networks[C]//CA,San Jose:Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2007:824-833.

二级参考文献103

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 3Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 4Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 5Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 6Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 7Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 8Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 9Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 10Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.

共引文献281

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部