摘要
为了克服Girvan-Newman算法运行效率的不足,提出了一个基于modularity极值近似的社团发现算法MEA。该算法采用modularity增量作为社团结构的度量,使用贪心策略获得最优社团分划的近似解。通过理论分析,并在实际的数据集上进行实验验证,结果表明MEA算法是快速、有效的。
To improve the efficiency of Girvan-Newman(G-N) algorithm, a community detection algorithm named modularity extreme approximation (MEA) is given. MEA algorithm uses the increment of modularity as the measure for community structure and finds the solution with a greedy strategy. The theoretical analysis and experimental results show the MEA algorithm is more effective and faster than the G-N algorithm.
出处
《计算机科学与探索》
CSCD
2010年第12期1101-1108,共8页
Journal of Frontiers of Computer Science and Technology
基金
国家自然科学基金No.60503021
60721002
60875038
国家教育部重点项目No.108151
江苏省科技支撑计划No.BE2009142~~