期刊文献+

Legendre序列快速生成的CUDA实现 被引量:1

Fast implementation of Legendre sequence generation by CUDA
在线阅读 下载PDF
导出
摘要 序列设计在信息安全,无线通信等诸多领域中有着重要应用。在流密码系统中,要求产生的随机序列具有理想的随机复杂度度量如线性复杂度,k阶相关复杂度等。其中Legendre序列具有这些理想的随机性质。实用中序列的生成速度也是很重要的考虑因素。探讨了大素数周期的Legendre序列生成的相关算法,并运用统一计算设备架构平台(CUDA)对其进行优化以加快序列的生成速度。实验结果表明,运用CUDA进行序列的并行生成,序列的生成速度有数量级的提高。 Sequence design has many important applications in many research areas such as information security and wireless communications. The generated sequences are required to have ideal properties on some pseudorandom measures such as linear complexity and order of k correlation measure, etc. Legendre sequence is a type of sequence having these features. In real applications, the speed of pseudorandom sequences generation is an important concern. The Legendre sequence generation algorithm for large primes is discussed, and the speed of generation is accelerated by using CUDA platform. Experimental results show the speed is improved in order of magnitude by parallel computation.
出处 《计算机工程与应用》 CSCD 2014年第8期66-71,153,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61003070 No.60903028 No.61070014) 天津市科技支撑计划(No.11ZCKFGX01100) 中央高校基本科研业务费支持
关键词 流密码 Legendre序列 统一计算设备架构(CUDA) 并行计算 复杂度度量 stream cipher Legendre sequence Compute Unified Device Architecture (CUDA) parallel computation complexity measures
  • 相关文献

参考文献11

  • 1Damgard I B.On the randomness of Legendre and Jacobi sequences[C]//Advances in Cryptology CRYPTO' 88.Ger- many: Springer-Verlag, 1988,403 : 163-172.
  • 2Ding C,Tor H.On cyclotomic generator of order r[J]. Information Processing Letters, 1998,66( 1 ) :21-25.
  • 3Ding C.Pattern distributions of Legendre sequences[J]. IEEE Transactions on Information Theory, 1998,44(4): 1693-1698.
  • 4Sidel' nikov V M.Some k-valued pseudorandom sequences and nearly equidistant codes[J].Problems of Information Transmission, 1969,5 ( 1 ) : 12-16.
  • 5Su M, Winterhof A.Autocorrelation of Legendre-Sidelnikov sequences[J].IEEE Transactions on Information Theory, 2010,56(4) : 1714-1718.
  • 6Su M, Winterhof A.Correlation measure of order k and linear complexity profile of Legendre-Sidelnikov sequences[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2012, E95-A (11) : 1851-1854.
  • 7Ding C, Tor H, Shan W.On the linear complexity of Legendre sequences[J].lEEE Transactions on Informa- tion Theory, 1998,44(3) : 1276-1278.
  • 8何贤芒.Legendre序列在GF(p)上的线性复杂度[J].通信学报,2008,29(3):16-22. 被引量:1
  • 9Mauduit C, Sarktizy A.On finite pseudorandom binary sequences I. measure of pseudorandornness, the Legendre symbol[J].Acta Arith, 1997,82 (4) : 365-377.
  • 10Sanders J,Kandrot E.GPU高性能编程CUDA实战[M].聂雪军,译.北京:机械工业出版社,2011.

二级参考文献6

  • 1MCELIECE R, Finite Fields for Computer Scientists and Engineers[M]. Kluwer Academic Publishers, 1987.
  • 2K.LAPPER A. The vulnerability of eometric sequences based on fields of odd characteristic[J]. J Cryptology, 1994, 7:33-51.
  • 3CHAN A, GAMES R. On the linear span of binary sequences from finite geometries[A]. Advances in Cryptology[C]. Spring-Verlag, 1986.
  • 4TURYN R. The linear generation of the Legendre sequences[J]. Soc Ind Appl Math, 1964, 12(1): 115-117.
  • 5DING C, HELLESETH T, SHAN W. On the linear complexity of legendre sequences[J]. IEEE Trans Informs Theory, 1999, 145: 2060- 2064.
  • 6JEONG K, HONG S. Trace of legendre representation sequences[J]. Designs, Codes and Cryptography, 2001, 24: 343-348.

共引文献12

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部