期刊文献+

自适应调整参数的果蝇优化算法 被引量:26

Fruit fly optimization algorithm with adaptive parameter
在线阅读 下载PDF
导出
摘要 针对基本果蝇优化算法因参数选取不当而导致的收敛精度偏低且不稳定的问题,提出了自适应调整参数的果蝇优化算法(FOA with Adaptive Parameter,FOAAP)。该算法在每个进化代输入描述种群整体特征的精确数值,由逆向云发生器算法得到当代云模型的3个数字特征C(ExtEntHet),按照U条件隶属云发生器自适应调整果蝇个体搜寻食物的方向与距离Value这一参数。将该算法在函数优化中,与基本果蝇优化算法以及相关文献中算法进行仿真对比,结果表明,新算法在收敛速度、收敛可靠性及收敛精度方面具有明显优势。 In order to overcome the problems of FOA, such as low convergence precision and unstable convergence resulted from improper random parameter, an improved FOA is proposed, called Fruit Fly Optimization Algorithm with Adaptive Parameter(FOAAP). In each evolutionary generation, the accurate values describing the characteristics of the overall species are input, 3 digital characteristics C(Ext'Ent'Het) of the contemporary cloud model are obtained by backward cloud generator, then using U conditions membership cloud generator, the parameter Value is adaptively adjusted, which is Fruit Fly’s searching distance and direction for food. FOAAP is compared with FOA and other algorithms in reference literatures, experimental results show that FOAAP has the advantages of speeder convergence, higher convergence preci-sion and higher convergence reliability.
出处 《计算机工程与应用》 CSCD 2014年第7期50-55,共6页 Computer Engineering and Applications
基金 甘肃省自然科学基金(No.1208RJZA133) 甘肃省科技支撑计划(No.1011NKCA058) 甘肃省教育厅科研基金(No.1202-04)
关键词 云模型 自适应 果蝇优化算法 收敛精度 cloud model adaptive convergence precision
  • 相关文献

参考文献13

二级参考文献72

共引文献576

同被引文献156

引证文献26

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部