期刊文献+

基于粒子群优化算法的支持向量机参数选择及其应用 被引量:132

Parameters selection and application of support vector machines based on particle swarm optimization algorithm
在线阅读 下载PDF
导出
摘要 参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该方法的有效性后,用其建立了聚丙烯腈生产过程中数均分子量的软测量模型,结果表明该方法有效. Parameters selection is an important problem in the research area of support vector machines (SVM), and its nature is an optimization problem. Motivated by the effectiveness of evolution algorithm on optimization problem, a new automatic searching methodology, based on particle swarm optimization (PSO) algorithm, is proposed in this paper. Each particle indicates a group of SVM parameters, and the population is a collection of particles in this method. Furthermore, the k-fold cross-validation error is used as the fitness function of PSO. After having been validated its effectiveness by two artificial data experiments, the proposed method is then applied to establish a soft-sensor model for average molecular weight in polyacrylonitrile productive process. Finally, real data simulation results are also given to show the efficiency.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期740-743,748,共5页 Control Theory & Applications
基金 国家高技术研究发展计划(863计划)资助项目(2002AA412120).
关键词 支持向量机 参数选择 粒子群优化 聚丙烯腈 软测量 support vector machines parameters selection particle swarm optimization polyacrylonitrile soft-sensor
  • 相关文献

参考文献11

  • 1VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer-Veriag,1995.
  • 2SMOLA A J,SCHOLKOPF B.A tutorial on support vector regression[R].NeuroCOLT2 Technical Report NC2-TR-1998-030.London:Royal Holloway College,University of London,1998.
  • 3SANCHEZ A D.Advanced support vector machines and kernel methods[J].Neurocomputing,2003,55(1):5-20.
  • 4CHAPPELLE O,VAPNIK V,BOUSQUET O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-160.
  • 5CHEN Pengwei,WANG Jungying,LEE Hahnming.Model selection of SVMs using GA approach[C]//Proc of 2004 IEEE Int Joint Conf on NeuralNetworks.Piscataway,NJ:IEEE Press,2004:2035-2040.
  • 6ZHENG Chunhong,JIAO Licheng.Automatic parameters selection for SVM based on GA[C]//Proc of the 5th World Congress on Intelligent Control and Automation.Piscataway,NJ:IEEE Press,2004:1869 -1872.
  • 7KENNEDY J,EBERHART R.Particle swarm optimization[C] //Procof IEEE Int Conf on Neural Networks,Perth,Australia.Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 8EBERHART R,KENNEY J.A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan.Piscataway,NJ:IEEE Press,1995:39-43.
  • 9VANDEN B F,ENGELBRECHT A P.Training product uhit networks using cooperative particle swarm optimizers[C]]//Proc of the Third Genetic and Evolutionary Computation Conference (GECCO),San Francisco,USA.Piscataway,NJ:IEEE Press,2001:126-132.
  • 10杨慧中,张素贞,陶振麟.聚丙烯腈质量指标软测量混合模型的应用[J].化工自动化及仪表,2002,29(6):11-13. 被引量:8

二级参考文献11

  • 1洪璋传.丙烯腈连续水相聚合的过程分析及控制[J].合成纤维工业,1994,17(2):37-41. 被引量:9
  • 2Johansen T A.Identification of None-linear Systems Using Empirical Data and Priori Knowledge--An Optimization Approach[J].Automatica,1996,32(3):337-356.
  • 3Zorzetto L F M,Wilson J A.Monitoring Bioprocesses Using Hybrid Model and an Extended Kalman Filter[J].Comp Chem Eng,1996,20(Suppl pt A):689-694.
  • 4Wilson J A,Zorzetto L F M.A Generalized Approach to Process State Estimation Using Hybrid Artificial Neural Network/Mechanistic Models[J].Comp Chem Eng,1997,21(9):951-963.
  • 5Dimitris C P,Lyle H U.A Hybrid Neural Networks-first Principles Approach to Process Modeling[J].AIChE J,1992,38(10):1499-1511.
  • 6Schubert J,Simutis R,et al.Hybrid Modeling of Yeast Production Processes--Combination of Priori Knowledge on Different Levels of Sophistication[J].Chem Eng Technol,1994,17:10-20.
  • 7Schubert J,Simutis R,et al.Bioprocess Optimization and Control:Application of Hybrid Modeling[J].J Biotech,1994,35:51-68.
  • 8Michael L T,Mark A K.Modeling Chemical Process Using Priori Knowledge and Neural Networks[J].AIChE J,1994,40(8):1328-1340.
  • 9陈晓东,马广富,王子才.改进的Elman网络与机理模型的互补建模方法[J].系统仿真学报,1999,11(2):97-100. 被引量:17
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2311

共引文献11

同被引文献1240

引证文献132

二级引证文献888

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部