期刊文献+

基于粒子群算法的非均匀稀布阵列综合 被引量:6

Unequally Spaced Sparse Array Synthesis Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 给出了一种基于粒子群算法的非均匀稀布阵列综合方法,设计有最小阵元间距约束的稀布阵,通过加入间距约束向量改进了适应度算法,不仅减小了布阵空间,而且消除了优化过程中的不合格个体。在给定阵列孔径和阵元数的条件下,实现了最小阵元间距约束下抑制栅瓣,降低旁瓣电平的阵列综合。通过仿真实例,验证了此方法的高效可行性。 A synthesizing method of unequally spaced sparse linear array with constraint of the minimum element spacing is presented based on particle swarm optimization (PSO). By adding element spacing constraint vector, fitness algorithm is improved, size of the sparse array is reduced, and unqualified individual during the optimization process is eliminated. When array aperture and number of elements are given, grating lob suppression and peak sidelobe level reduction can be achieved with constraint of the minimum element spacing. The simulated results verify that the method is effective and feasible.
作者 孙绍国
出处 《火控雷达技术》 2014年第1期14-17,50,共5页 Fire Control Radar Technology
关键词 粒子群算法 非均匀 稀布阵 particle swarm optimization unequally spaced sparse arrays
  • 相关文献

参考文献8

  • 1Mailloux R J and Cohen E. Statically thinned ar- rays with quantized element weights [ J]. IEEE Trans. On Antennas Propagation, 1991, 39 (4) :436 -447.
  • 2Murino V, Trueeo A, and Regazzoni C S. Syn- thesis of unequally spaced arrays by simulated annealing [ J]. IEEE Trans. On Antennas Sig- nal Processing, 1996, 44 ( 1 ) : 119 - 123.
  • 3Kumar B. P., Branner G. R.. Generalized Analytieal Technique for the Synthesis of Une- qually Spaced Arrays with Linear, Planar, Cy- lindrical or Spherieal Geometry [ J ]. IEEE Trans. on Antenna and Propagation, 2005, 53 (2) :621-634.
  • 4张子敬,赵永波,焦李成.阵列天线的遗传优化[J].电子科学学刊,2000,22(1):174-176. 被引量:21
  • 5Chen Kesong, He Zishu, Han Chunlin. A Mod- ified Real GA for the Sparse Linear Array Syn- thesis with Multiple Constraints [ J]. IEEE Trans. on Antennas Propagation, 2006, 54 (7) : 2169 -2173.
  • 6Khodier M. M. , Christodoulou C. G. Linear Ar- ray Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Particle Swarm Opti- mization [ J ]. IEEE Trans. on Antennas and Prop- agation, 2005, 53 (8) :2674 - 2679.
  • 7陆鹏程,徐海洲,徐晋,付启众,胡坤娇.稀布阵综合脉冲孔径雷达阵列优化设计[J].雷达科学与技术,2008,6(4):243-246. 被引量:11
  • 8焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计[J].电波科学学报,2006,21(1):16-20. 被引量:59

二级参考文献18

  • 1刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 2任盛海,吴志忠.遗传算法在阵列天线方向图综合设计中的应用[J].电波科学学报,1996,11(4):62-67. 被引量:14
  • 3J Kennedy , R Eberhart. Particle swarm optimization[A]. In Proc IEEE Int Conf. Neural Networks [C].Perth, Australia , 1995, 1942-1948.
  • 4J Robinson, Y. Rahmat-samii particle swarm optimization in electromagnetics [J]. IEEE Trans on AP 2004, 52(2):397-407.
  • 5Dennis Gies, Yahya Rahmat-Samii. Particle swarm optimization for reconfigurable phase-differentiated array design[J]. Microwave and optical technology letter,2003,38(3): 168-175.
  • 6D W Boeringer,D H. Werner particle swarm optimization versus genetic algorithms for phased array synthesis[J]. IEEE Trans on AP, 2004, 52(3): 771-779.
  • 7Yuhui Shi,Russel C Eberhart. Empirical study of particle swarm optimization [A]. Proc of the Congress on Evolutionary Computation [C]. Washington DC,1999: 1945-1950.
  • 8王茂光,吕善伟.阵列天线分析与综合[M].电子科技大学出版社,1988.
  • 9Wu Jianqi,,He Ruilong,Jiang Kai.Researches of aNew Kind of Advanced Metric Wave Radar[].Procof the IEEE Radar Conference.1999
  • 10Kennedy J,Eberhart R.A Discrete Binary Version ofParticle Swarm Optimization Algorithm[].Proc ofCongress on Evolution Computation.2004

共引文献87

同被引文献37

  • 1龚树凤,龙伟军,潘明海,贲德.基于模糊相关机会规划的机会阵雷达方向图综合[J].电波科学学报,2015,30(2):201-207. 被引量:6
  • 2陈客松,韩春林,何子述.一种有阵元间距约束的稀布阵天线综合方法[J].电波科学学报,2007,22(1):27-32. 被引量:20
  • 3王青,肖怀铁,张安.基于模拟退火算法的MIMO雷达稀疏线阵设计.全国信号和智能信息处理与应用学术会议.2011.
  • 4Priso G, D, Urso M. Maximally sparse arrays via sequential convex optimization. IEEE Antennas Wireless Propagation Letter, 2012 , 11 : 192-195.
  • 5Nai S E,Ser W,Yu Z L, et al. Beampattem synthesis for linear and planar arrays with antenna selection by convex optimization. IEEE Transactions on Antennas and Propagation, 2010 ,58:3923-3930.
  • 6Fuchs B. Synthesis of sparse arrays with focused or shapedbeampat- tern via sequential convex optimizations. IEEE Transactions on An- tennas and Propagation. 2012:60:3499-3503.
  • 7Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters,2007:707-710.
  • 8Gong P, Shao Z. Target estimation by iterative reweighted Lp minimi- zation for MIMO radar. Signal Processing, 2014,101:35-41.
  • 9包子阳,陈客松,何子述,韩春林.基于改进差分进化算法的圆阵稀布方法[J].系统工程与电子技术,2009,31(3):497-499. 被引量:7
  • 10储颖,糜华,纪震,吴青华.基于粒子群优化的快速细菌群游算法[J].数据采集与处理,2010,25(4):442-448. 被引量:19

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部