期刊文献+

基于加权l_1范数稀疏信号表示的DOA估计 被引量:10

DOA Estimation Based on Weighted l_1 Norm Sparse Signal Representation
在线阅读 下载PDF
导出
摘要 为了在小样本、低信噪比以及高信源相关性的条件下都能对波达方向(direction of arrival,DOA)进行精确估计,基于压缩感知理论,利用目标信号空间分布的稀疏性,提出了基于加权l_1范数稀疏信号表示的DOA估计算法.该算法对l_1-奇异值分解(singular value decomposition,SVD)算法进行改进,对接收矩阵进行预处理,根据子空间的正交性确定加权矩阵,以加权l_1范数作为最小化的目标函数进行优化得到稀疏信号,进而得到信号的DOA.仿真结果表明,通过加权处理的l_1范数下稀疏信号重构方法能有效抑制偏差,在低信噪比下能够准确稳定地估计出DOA,并且能够提高估计精度. To accurately estimate the direction of arrival (DOA) under conditions of small samples, low signal-to-noise ratio and high correlations of sources, according to the compressive sensing theory, DOA estimation based on weighted 11 nora1 sparse signal representation was proposed by using the sparse distribution of the spatial signal source bearing. The 11 -SVD algorithm was improved by this algorithm, the receiving matrix was proposed, the weighting matrix was determined according to the orthogonality of the subspace, and the sparse vector was obtained by the optimization using the weighted 1 nora1 as target function for minimization. Then, the DOA of the signal was obtained. Simulations demonstrate that the proposed algorithm can effectively suppress the deviation by sparse signal reconstruction method under weighted processing l1 nora1. At the low SNR, DOA can be estimated accurately and steadily, and the precision of DOA estimation can be improved effectively.
作者 窦慧晶 高立菁 朱子云 DOU Huijing;GAO Lijing;ZHU Ziyun(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2018年第10期1297-1302,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61171137) 北京市教育委员会科研发展计划资助项目(KM201210005001)
关键词 稀疏重构 加权矩阵 波达方向 矩阵预处理 凸优化 奇异值分解(SVD) sparse reconstruction weighted matrix direction of mTival matrix preprocessing convex optimization singular value decomposition (SVD)
  • 相关文献

参考文献6

二级参考文献78

  • 1刘福来,白占立,汪晋宽,于戈.一种快速二维到来方向估计算法[J].东北大学学报(自然科学版),2005,26(12):1141-1144. 被引量:3
  • 2Yin Q Y,Zou L H.Estimating two-dimensional directions of arrival of narrow band sources[A].IEEE TENCON'90 Computer and Communication Systems[C].Hong Kong,1990.24-27.
  • 3Liu F L,Wang J K,Du R Y,et al.Joint DOA-delay estimation based on space-time matrix method in wireless channel[A].ISCIT 2005,International Symposium on Communications and Information Technologies 2005[C].Beijing,2005.354-357.
  • 4Zoltowski M D,Haardt M,Mathews C P.Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J].IEEE Transactions on Signal Processing,1996,44(2):316-328.
  • 5Wang H Y,Liu K J R.2-D spatial smoothing for multipath coherent signal separation[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):391-405.
  • 6Bhaskar D R,Hari K V S.Performance analysis of root-MUSIC[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(12):1939-1949.
  • 7Bhaskar D R,Hari K V S.Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,17(12):1990-1995.
  • 8Stoica P,Nehorai A.MUSIC,maximum likelihood and Cramer-Rao bound[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(5):720-741.
  • 9林波.基于压缩感知的辐射源DOA估计[D].长沙:国防科学技术大学,2010.
  • 10Schmidt R O.Multiple emitter location and signal parameter estimation[C]//Proc RADC Spectrum Estimation Workshop,Rome,NY,1979:243-258.

共引文献11

同被引文献58

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部