期刊文献+

不完整数据集的信息熵集成分类算法 被引量:6

Information Entropy Ensemble Classification Algorithm for Incomplete Data
在线阅读 下载PDF
导出
摘要 集成方法是处理包含缺失属性数据集分类问题的一种简单有效的方法,但目前针对不完整数据的集成分类算法在衡量各子分类器的权重时只考虑对应的数据子集的维数和大小.考虑到不完整数据集的缺失属性对类别的贡献度,使用信息熵衡量缺失属性之间的差异,提出一种新的针对不完整数据的集成学习分类算法———信息熵集成分类算法(EECA).应用以BP神经网络为基础分类器的集成分类器在UCI数据集上进行实验.实验结果表明,EECA比简单使用缺失属性的多少计算子分类器权重的方法更有效,最终结果准确度更高. Ensemble method is a simple and effective method to deal with incomplete data for classification. However, the weight of each sub-classifier in ensemble classification algorithm for incomplete data is mainly determined by the size and dimension of corresponding sub-dataset at present. The contributions of the missing attributes are different, and information entropy is introduced to measure these differences, thus, a novel algorithm for incomplete data named Entropy Ensemble Classification Algorithm (EECA) is proposed in this paper. The ensemble classifier with BP neural network being base classifier is applied on UCI dataset. The experimental results show that EECA determining the weight for Sub-classifier by information entropy is better than the algorithm by using simple weight.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第3期193-198,共6页 Pattern Recognition and Artificial Intelligence
基金 安徽省高等学校省级自然科学研究项目(No.KJ2013A016) 安徽省高校省级优秀青年人才基金项目(No.2011SQRL146)资助
关键词 信息熵 不完整数据 集成学习 信息熵集成分类算法 Information Entropy, Incomplete Data, Ensemble Learning, Entropy Ensemble ClassificationAlgorithm (EECA)
  • 相关文献

参考文献17

  • 1Allison P D. Missing data. Thousand Oaks, USA: Sage Publications, 2001.
  • 2Luengo J, Suez J A, Herrera F. Missing Data Imputation for Fuzzy Rule-Based Classification Systems. Soft Computing, 2012,16(5): 863-881.
  • 3徐宇明,陈诚,熊赟,朱扬勇.APT-KNN:一种面向分类问题的高效缺失值填充算法[J].计算机应用与软件,2011,28(4):135-139. 被引量:12
  • 4赵飞,刘奇志,张剡,柏文阳.一种大域数据流中缺失值的填充方法[J].南京大学学报(自然科学版),2011,47(1):32-39. 被引量:4
  • 5Little R J A, Rubin D B. Statistical Analysis with Missing Data. New York, USA: John Wiley & Sons, 1987.
  • 6陈景年,黄厚宽,田凤占,薛小平.一种基于特征选择的不完整数据分类方法[J].计算机工程与应用,2007,43(31):23-24. 被引量:2
  • 7陈景年,黄厚宽,徐力,伊传环.利用增益率构建混合型选择性不完整数据分类器[J].北京交通大学学报,2009,33(5):117-120. 被引量:2
  • 8Chen J N, Xu L. A Hybrid Selective Classifier for Categorizing Incomplete Data / / Proc of the 6th International Conference on Fuzzy Systems and Knowledge Discovery. Tianjin, China, 2009: 31-34.
  • 9Krause S, Polikar R. An Ensemble of Classifiers Approach for the Missing Feature Problem / / Proc of the International Joint Conference on Neural Networks. Portland, USA, 2003, 1: 553 -558.
  • 10Chen H X, Yuan S M, Jiang K. Wrapper Approach for Learning Neural Network Ensemble by Feature Selection / / Proc of the 2nd International Symposium on Neural Networks. Chongqing, China, 2005: 526-531.

二级参考文献41

  • 1殷杰,石锐.SAS中处理数据集缺失值方法的对比研究[J].计算机应用,2007,27(B06):438-439. 被引量:9
  • 2Langley P, Sage S. Induction of Selective Bayesian Classitiers[ C]// Proc. of the 10th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1994:399 - 406.
  • 3Singh M, Provan G M. Efficient Learning of Selective Bayesian Network Classifiers[C]// Proe. of the 13th International Conference on Machine Learning. Morgan Kaufman, 1996:453 - 461.
  • 4Quinlan J R. C4.5: Programs for Machine Learning[ M]. San Francisco, CA: Morgan Kaufmann, 1993.
  • 5Kohavi R, Becker B, Sommerfield D. Improving Simple Bayes[C]// M. Van Someren, G. Widmer. Poster Papers of the ECML-97. Charles University, Prague, 1997: 78 - 87.
  • 6Friedman N, Geiger D, Goldszmid M T. Bayesian Network Classifiers[J]. Machine Learning, 1997, 29(2/3): 131 - 163.
  • 7Little R J A, Rubin D B. Statistical Analysis with Missing Data[ M]. New York:Wiley, 1987.
  • 8Spiegelhalter D J, Cowell R G. Learning in Probabilistic Expert Systems[C]//Bernardo J, Berger J, Dawid A P, Smith A F M, Bayesian Statistics 4. Oxford University Press, Oxford, UK, 1992:447-466.
  • 9Ramoni M, Sebastiani P. Robust Bayes Classifiers[J]. Artificial Intelligence, 2001, 125 (1/2) : 209 - 226.
  • 10Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques (Second Edition) [ M ]. Morgan Kaufmann, 2005.

共引文献13

同被引文献56

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部