期刊文献+

两阶段半监督加权朴素信念分类模型

A Two-Stage Semi-Supervised Weighted Naive Credal Classification Model
在线阅读 下载PDF
导出
摘要 针对目前半监督分类算法中未考虑缺失属性隐含信息和算法复杂度高的情况,改进了朴素信念分类,提出了两阶段半监督加权朴素信念分类模型。与直推支持向量机对比实验结果表明两阶段半监督加权朴素信念分类模型减少了分类时间,并且在其能够明确分类的样本上的正确率与直推支持向量机相当,是一种有效的不完整数据分类算法。 Aiming at full use of implicit information in the incomplete data sets and reducing the high computational complexity of semi-supervised classification algorithms,this paper improves nave credal classifier,and proposes a two-stage semi-supervised weighted naive credal classification model,in which the process of semi-supervised classification is divided into two stages.Simulation results of comparative experiment with TSVM verify that this classification model is efficient.
出处 《运筹与管理》 CSCD 北大核心 2011年第5期156-161,共6页 Operations Research and Management Science
基金 国家自然科学基金重大项目(708890080) 教育部人文社科青年项目(11YJCZH131) 辽宁经济社会发展立项课题(2011LSIKTJJX-75)
关键词 模式识别 分类 半监督 加权 两阶段 pattern recognition classification semi-supervised weighing two-stage
  • 相关文献

参考文献10

  • 1Ibrahim J G, Zhu Hongtu, Tang Niansheng. Model selection criteria for missing-data problems using the EM algorithm[ J]. J Am Stat Assoc, December, 2008, 103 (484) : 1648-1658.
  • 2Roiger Richard J,Geatzer Michael W.数据挖掘教程[M].翁敬农,译.北京:清华大学出版社,2003.33-45.
  • 3Williams D, Liao Xuejun, Xue Ya, L Carin, Krishnapuram B. On Classification with incomplete data[J]. Pattern Analysis and Machine Intelligence, March, 2007, 29 ( 3 ) : 427- 436.
  • 4Ramoni M, Sebastiani P. Robust bayes classifiers[J]. Artificial Intelligence, 2001, 125(I-2) : 209-226.
  • 5Zaffalon Marco. Conservative rules for predictive inference with incomplete data[ C]. ISIPTA 2005: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, Manno, Switzerland. SIPTA: 406-415.
  • 6Teng Guifa, Liu Yihong, Ma Jianbin, Wang Fang, Yao Huiting. Improved algorithm for text classification based on TSVM [ C ]. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006. 55 -58.
  • 7YeWang, huang shangteng. Training TSVM with the proper number of positive sampies[ J]. Pattern recognition letters, 2005, 26: 1414, 2187-2194.
  • 8陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:89
  • 9Frank A, Asuncion A. UCI Machine learning repository[ EB/OL]. 2009-1-9. http://www, ics. uci. edu/-mlearn.
  • 10Corani Giorgio, Zaffalon Marco. JNCC2: The java implementation of naive credal classifier 2[ J]. Journal of Machine Learning Research, 2008, 9 : 2695-2698.

二级参考文献17

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部