期刊文献+

基于历史认知的果蝇优化算法 被引量:13

Fruit Fly Optimization Algorithm Based on History Cognition
在线阅读 下载PDF
导出
摘要 针对果蝇优化算法的早熟收敛问题,提出了一种新的基于历史认知的果蝇优化算法。新算法通过增加个体"历史认知"的改进策略,优化进化方程,从而避免潜在全局最优解因为不考虑自己的历史轨迹,仅依靠单纯的聚集行为,而使自己的寻优轨迹迂回曲折,错过成为全局最优解的可能;并且通过线性递增的动态变化系数ω调整在迭代寻优过程中个体的"历史"对本次学习的价值,增强算法跳出局部最优,寻找全局最优的能力。对几种经典测试函数进行了仿真和实例计算,结果表明新算法更好地平衡了全局和局部搜索能力,在收敛速度、收敛可靠性及收敛精度上比其他经典智能优化算法有较大的提高。 Considering the problem of premature convergence in fruit fly optimization algorithm (FOA), this paper proposes a new FOA based on history cognition (FOABHC). The new algorithm FOABHC optimizes the evolu- tionary equation by the strategy of adding "history cognition", and by doing so, the potential global optimum can avoid losing the probability of being the ultimate global optimum, which results from the potential global optimum not considering its own historical track, and simply aggregating to the current optimum to make its search trajectory with many twists and turns. The value of "history" to individual learning in the iterative optimization process is adjusted by the linear increment dynamic variation coefficient co. The ability to break away from the local optimum and find the global optimum is greatly enhanced. The comparative experimental results show that the new algorithm has the advantages of better balance searching abilities between global and local, faster convergence speed and better convergence precision.
出处 《计算机科学与探索》 CSCD 2014年第3期368-375,共8页 Journal of Frontiers of Computer Science and Technology
基金 甘肃省高等学校科研基金项目No.2013A-060 甘肃农业大学青年研究生指导教师扶持基金项目No.GAU-QNDS-201309~~
关键词 果蝇优化算法 群体智能 历史认知 收敛精度 早熟收敛 fruit fly optimization algorithm (FOA) swarm intelligence history cognition convergence precision premature convergence
  • 相关文献

参考文献7

二级参考文献43

共引文献956

同被引文献65

  • 1段海滨,王道波,黄向华,朱家强.基于蚁群算法的PID参数优化[J].武汉大学学报(工学版),2004,37(5):97-100. 被引量:53
  • 2王吉波,王明征,夏尊铨.Single Machine Scheduling Problems with General Learning Effect[J].Journal of Mathematical Research and Exposition,2005,25(4):642-646. 被引量:10
  • 3潘文超.果蝇最佳化演算法--最新演化式计算技术[M].台湾:沧海书局.2011.
  • 4Garey M R, Johnson D S, Sethi R. The complexity of flow shop and job shop scheduling[ J ]. Mathematics of Op- erations Research, 1976,1 (2) : 117 - 129.
  • 5Xiaofang Yuan, Xiangshan Dai, Jingyi Zhao, Qian He. On a novel multi - swarm fruit fly optimization algorithm and its application[ J ]. Applied Mathematics and Computation,2014.
  • 6Pan, Wen -Tsao. Using modified fruit fly optimisation algorithm to perform the function test and case studies [ J]. Connection Scienc ,2013 ( No. 2 - 3 ).
  • 7Biskup D. Single machine scheduling with learning considerations [ J ]. European Journal of Operational Re- search, 1999,115( 1 ) :173 - 178.
  • 8WRIGHT T P. Factors affecting the cost of airplanes[ J]. Aeronautical Sciences,1936(3) :122 - 128.
  • 9杜贞,叶春明,凌远雄.应用萤火虫算法求解基于学习效应的PFSP问题[J/OL].计算机工程与应用,http://www.cnki.net/kems/doi/10.3778/j.issn.1002-8331.1308-0408.html.
  • 10PAN Wen-tao. A new fruit fly optimization algorithm: taking the financial distress model as an example[J], knowledge-based Systems, 2012, 26: 69-74.

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部