期刊文献+

基于随机黑洞和逐步淘汰策略的多目标粒子群优化算法 被引量:6

Multi- objective particle swarm optimization algorithm based on random black hole mechanism and step-by-step elimination strategy
原文传递
导出
摘要 提出一种基于随机黑洞粒子群算法(RBH-PSO)和逐步淘汰策略的多目标粒子群优化(MRBHPSO-SE)算法.利用RBH-PSO全局优化能力强和收敛速度快的优点逼近Pareto最优解;为了避免拥挤距离排序策略的缺陷,提出逐步淘汰策略,并将其应用到下一代粒子的选择策略中.同时,动态选择领导粒子,运用动态惯性权重系数和变异操作来增强种群全局寻优能力,以及避免早熟收敛.利用具有不同特点的测试函数进行验证,结果表明,与同类算法相比,该算法具有较高的精度并兼顾优化解的多样性. A multi-objective particle swarm optimization algorithm based on the random black hole particle swarm optimization(RBH-PSO) and step-by-step elimination strategy is proposed. The Pareto optimal solutions are approached by its advantage of speeding up the convergence and improving the performance of global optimizer greatly. To avoid the disadvantage of crowding distance sorting technique, the step-by-step elimination(SE) strategy is proposed, which is used to select the particles from one iteration to another. In addition, dynamic selection of leader particle for each particle, adaptive inertia weight and a special mutation operation are incorporated to enhance the global exploratory capability and avoid premature convergence. The performance of the proposed algorithm is tested on a set of well-known benchmark functions and compared with several representative multi-objective optimization algorithms. Simulation results show that the MRBHPSO-SE algorithm can converge to the global optimal with high accuracy while keeping the good diversity of the Pareto solutions.
作者 陈民铀 程杉
出处 《控制与决策》 EI CSCD 北大核心 2013年第11期1729-1734,1740,共7页 Control and Decision
基金 国家自然科学基金项目(51177177) 国家111引智计划项目(B08036) 输配电装备及系统安全与新技术国家重点实验项目(2007DA10512710205)
关键词 多目标优化 随机黑洞粒子群算法 拥挤距离排序 逐步淘汰 multi-objective optimization RBH-PSO crowding distance sorting step-by-step elimination
  • 相关文献

参考文献17

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C]. IEEE lnt Conf on Neural Networks. Perth, 1995: 1942- 1948.
  • 2Sierra M R, CoeUo C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Computational Intelligence Reserch, 2006, 2(3): 287-308.
  • 3Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282.
  • 4Sierra M, Coello C. Improving PSO-based multi- objective optimization using crowding, mutation and e- dominance[C]. Int Conf on Evolutionary Multi-Criterion Optimization, Guanajuato, 2005: 505-519.
  • 5Li X D. Better spread and convergence: Particle swarm multi-objective optimization using the maximin fitness function[C]. Proc of the Genetic and Evolutionary Computation Conf. Washington, 2004:117-128.
  • 6贾树晋,杜斌,岳恒.基于局部搜索与混合多样性策略的多目标粒子群算法[J].控制与决策,2012,27(6):813-818. 被引量:33
  • 7Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 8施展,陈庆伟.基于QPSO和拥挤距离排序的多目标量子粒子群优化算法[J].控制与决策,2011,26(4):540-547. 被引量:32
  • 9Mahfouf M, Chen M Y, Linkens D A. Adaptive weighted particle swarm optimisation for multi-objective optimal design of alloy steels[J]. Lecture Notes in Computer Science, 2004, 3242: 762-771.
  • 10陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群优化算法[J].控制与决策,2009,24(12):1851-1855. 被引量:55

二级参考文献93

  • 1雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 2江善和,王其申,江巨浪.一种新型Skew Tent映射的混沌混合优化算法[J].控制理论与应用,2007,24(2):269-273. 被引量:17
  • 3Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Computational Intelligence Research, 2006, 2 (3) : 287-308.
  • 4Parsopoulos K E, Vrahatis M N. Particle swarm optimization in multiobjective problems[C]. Proc of the ACM 2002 Symposium on Applied Computing. Madrid, 2002: 603-607.
  • 5Parsopoulos K E, Tasoulis D K, Vrahatis M N. Multiobjective optimization using parallel vector evaluated particle swarm optimization [C]. Proc of the IASTED Int Conf on Artificial Intelligence and Applications, Innsbruck, 2004: 823-828.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation, 2002, 6 (2): 182-197.
  • 7Li X D. A non-dominated sorting particle swarm optimizer for multiobjeetive optimization [J]. Lecture Notes in Computer Science, 2003, 2723: 37-48.
  • 8Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multi-objective optimization[J]. Evolutionary Computation, 2002, 10 (3) : 263-282.
  • 9Mostaghim S, Teich J. The role of ε-dominance in multi- objective particle swarm optimization methods[C]. Proc of IEEE Swarm Intelligence Symposium. Canberra, 2003: 1764-1771.
  • 10Sierra M R, Coello C A C. Improving PSO-based multi- objective optimization using crowding mutation and dominance[C]. Int Conf on Evolutionary Multi-criterion Optimization. Guanajuato, 2005: 505-519.

共引文献180

同被引文献67

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部