期刊文献+

基于差分演化的改进多目标粒子群优化算法 被引量:4

Improved Multi-objective Particle Swarm Optimization Based on Differential Evolution
原文传递
导出
摘要 提出一种基于差分演化的改进多目标粒子群优化算法来求解多目标优化问题。算法通过对Pareto最优解集的差分演化来增加Pareto解集的多样性;通过循环拥挤距离来控制归档集中非劣解的分布,提高对种群空间的均匀采样;采用一种新的多目标适应值轮盘赌法选择粒子的全局最优位置,使其更逼近Pareto最优前沿;自适应惯性权重和加速度因子的设计增强了算法的全局搜索能力。多个多目标测试函数的仿真结果表明,改进的多目标粒子群算法能够在保持Pareto最优解多样性的同时具有较好的收敛性能。 An improved multi-objective particle swarm optimization algorithm based on differential evolution (DE-IMOPSO) was proposed to solve multi-objective optimization problem. Differential evolution was used for Pareto set to increase its diversity. And a circular crowded sorting approach was adopted to improve the uniformity of the population distribution. A new multi-objective fitness roulette algorithm was applied to select the global best location of each particle to make it approach to Pareto frontier more closely. Adaptive inertia weight and acceleration coefficients enhanced the global exploratory capability. The simulation results of benchmark test functions show that DE-IMOPSO not only obtains the more diversity of the Pareto solutions but also possesses the better global convergence.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2211-2215,共5页 Journal of System Simulation
基金 陕西省自然科学基金(2010JQ8006) 陕西省教育厅科学研究专项(2010JK711)
关键词 多目标优化 差分演化 粒子群优化算法 循环拥挤排序 multi-objective Particle warm optimization (PSO) differential evolution circular crowded sorting
  • 相关文献

参考文献15

  • 1Robie Tea, Filpie Bogdan. DEMO: differential evolution for multi-- objective optimization [C]//The 3rd Int'l Conference on Evolutionary Multi-Criterion Optimization (EMO 2005). Berlin, Heidelberg, Germany: Springer-Verlag, 2005: 520-533.
  • 2Coello Carlos A Coello, Pulido Gregorio Toscano, Leehuga Maximino Salazar. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation (SI089-778X), 2004, 8(3): 256-279.
  • 3熊盛武,刘麟,王琼,史旻.改进的多目标粒子群算法[J].武汉大学学报(理学版),2005,51(3):308-312. 被引量:21
  • 4Ripathi Praveen Kumar, Bandyopadhyay Sanghamitra, Pal Sanker Kumar. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients [J]. Inform Sci. (S0020-0255), 2007, 177(22): 5033-5049.
  • 5丛琳,焦李成,沙宇恒.正交免疫克隆粒子群多目标优化算法[J].电子与信息学报,2008,30(10):2320-2324. 被引量:5
  • 6Gary G Yen, Wen Fung Leong. Dynamic Multiple Swarms in Mulutiobjective Particle Swarm Optimization. Systems, Man and Cybernetics, Part A; Systems and Humans [J]. IEEE Transactions on Systems (S1083-4427), 2009, 39(4): 890-911.
  • 7胡广浩,毛志忠,何大阔.基于两阶段领导的多目标粒子群优化算法[J].控制与决策,2010,25(3):404-410. 被引量:19
  • 8陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群优化算法[J].控制与决策,2009,24(12):1851-1855. 被引量:55
  • 9Shi Yu-hui, Eberhart Russell C. Parameter selection in particle swarm optimization [C]// New York, USA: Proceedings of the Seventh Annual Conference on Evolutionary Programming, 1998: 591-600.
  • 10Margarita Reyes Sierra, Coello Carlos A Coello. Multi-objective particle swarm optimizers: A survey of the state-of-the-art [J]. Int J of Computational Intelligence Research (S0973-1873), 2006, 2(3): 287-308.

二级参考文献78

共引文献143

同被引文献54

  • 1杨惠珍,康凤举,阎晋屯.一种基于AHP的仿真可信度评估方法研究[J].系统仿真学报,2006,18(z2):52-54. 被引量:18
  • 2陈海焱,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化算法[J].电力系统自动化,2006,30(2):22-26. 被引量:219
  • 3国务院发展研究中心产业经济研究部、中国汽车工程学会和大众汽车集团(中国).中国汽车产业发展报告(2008)[R].北京:社会科学文献出版社.2008:188.
  • 4Kempton W, Letendre S E. Electric vehicles as a new power source for electric utilities [J ].Transportation Research Part D: Transport and Environment, 1997, 2D (3) : 157-175.
  • 5Isomursu P, Dillon T S. Fuzzy Multi Objective Decision Making With Linear Programming [C].IEEE International Workshop on Emerging Technologies and Factory Automation, 1992: 578-583.
  • 6Xiaoli H, Yan L, Tonglee C, et al. Electric vehicles reform strategy based on Multi- Objective Dynamic Programming [ C ] .International Conference on Electronics, Communications and Control (ICECC) , 2011: 3715-3718.
  • 7Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA- II [J].IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182-197.
  • 8Farina M, Amato P. A Fuzzy Definition of "Optimality" for Many- Criteria Optimization Problems [J]. IEEE Transactions on Systems, 2004,34 (3) : 315-326.
  • 9Chen Gonggui. A Novel QEA-based Optimum Switch Placement Method for Improving Customer Service Reliability[J].IEEE Trans on Power Systems (S0885-8950),2008,(02):620-623.
  • 10Chen Chaoshun,Lin Chiahung,Chuang Huihen. Optimal Placement of Line Switches for Distribution Automation Systems Using Immune Algorithm[J].IEEE Trans on Power Systems (S0885-8950),2006,(03):425-430.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部