期刊文献+

混沌调制模信转换实验研究 被引量:1

Experimental Investigation on Chaotic Modulation for Analog-to-Information Conversion
在线阅读 下载PDF
导出
摘要 混沌压缩感知是一种采用混沌系统实现随机测量,利用稀疏正则非线性最优化技术实现信号重构的非线性压缩感知理论;具有实现结构简单,测量数据保密性强等特点。混沌调制是一种基于混沌压缩感知理论的模拟信息转换方法,该方法将待采样信号调制到混沌系统的参数上,通过低速采样混沌系统状态输出实现压缩采样。本文设计了一个基于Lorenz系统的混沌调制实验系统,测试了实验系统对不同稀疏度的频率稀疏信号的重构性能,实验结果验证了混沌调制模信转换的可实现性。 Chaotic Compressive Sensing (ChaCS) is a nonlinear compressive sensing theory, which uses chaotic systemsto randomly measure signals and performs the signal reconstruction by sparsity-regularized nonlinearly optimization tech- nique. It is simple in implementation and can generate secure measurement data. Chaotic modulation is a ChaCS-based nonlinear analog-to-information conversion technique, which acquires compressive samples of the sparse analog signals through parameter-modulation at low-rate sampling of the chaotic system. This paper presents an experimental circuit of the Lorenz system-based chaotic modulation and studies its reconstruction performance. The exPerimental results validate the feasibility of the analog-to-information conversion.
出处 《信号处理》 CSCD 北大核心 2013年第9期1105-1112,共8页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60971090 61101193)
关键词 混沌压缩感知 混沌调制 参数估计 电路实验 Chaotic Compressive Sensing Chaotic Modulation Parameter Estimation Circuit Experiment
  • 相关文献

参考文献15

  • 1Donoho D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
  • 2Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transaction on Information Theory,2006,52(2):489-509.
  • 3Liu Z,Chen S Y,Xi F.A compressed sensing framework of frequency-sparse signals through chaotic systems[J].International Journal of Bifurcation and Chaos,2012,22(6):1250151.1-1250151.9.
  • 4陈胜垚,席峰,刘中.基于线性化的混沌压缩感知重构算法[J].信号处理,2012,28(6):806-811. 被引量:1
  • 5Laska J N,Kirolos S,Massoud Y,Baraniuk R G,Gilbert A,Iwen M,Strauss M.Random sampling for analog-to-information conversion of wideband signals[C].IEEE Dallas/CAS Workshop on Design,Applications,Integration and Software,Dallas,2006:119-122.
  • 6Tropp J A,Wakin M B,Duarte M F,Baron D,Baraniuk R G.Random filters for compressive sampling and reconstruction[C].IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP),Toulouse,2006:872-875.
  • 7Tropp J A,Laska J N,Duarte M F,Romberg J K,Baraniuk R G.Beyond Nyquist:efficient sampling of sparse bandlimited signals[J].IEEE Transaction on Information Theory,2010,58(1):520-544.
  • 8Taheri O,Vorobyov S A.Segmented compressed sampling for analog-to-information conversion:Method and performance analysis[J].IEEE Transactions on Signal Processing,2011,59(2):554-572.
  • 9李少东,杨军,胡国旗.一种改进的压缩感知信号重构算法[J].信号处理,2012,28(5):744-749. 被引量:10
  • 10Xi F,Chen S Y,Liu Z.Chaotic analog-to-information conversion:principle and reconstructability with parameter identifiability[EB/OL].http:// arxiv.org/abs/1212.2725,12Dec.,2012.

二级参考文献21

  • 1Donoho D L and Y Tsaic. Extensions of compressed sens- ing. Signal Processing. 2006.86( 3 ) :533-548.
  • 2Donoho D L. Compressed Sensing [ J ]. IEEE Transations on Information Theory[J] ,2006,52(4) :1289-1306.
  • 3N. Vaswani, "LS-CS-residual (LS-CS) : Compressive Sens- ing on Least Squares residual. " http://dsp, rice. edu/cs.
  • 4C. Qiu, w. Lu, and N. Vaswani, "Real-time dynamic MRIreconstruction using Kalman filtered CS. " http: ff dsp. rice. edu/cs.
  • 5ANamrata Vaswani. KF-CS: Compressive Sensing on Kal- man Filtered Residual. http: JJwww. computing, edu. au/ - dsp/cs.
  • 6N. Vaswani ,Analyzing least squares and kalman filtered com- pressed sensing, in ICASSP,2009.
  • 7An Interior-Point Method for Iarge-Scale ll-Regularized Least Squares. http: //www. computing, edu. au/- dsp/cs.
  • 8E. Candes and T. Tao, " Decoding by linear program- ming," [ J ]. IEEE Trans. on Information Theory. 2005, 51 (12) :4203-4215.
  • 9S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U. K. : Cambridge University Press [ M ], 2004:561- 609.
  • 10Donoho D. Compressed sensing [ J ]. IEEE Transactions on Information Theory ,2006,52(4) : 1289-1306.

共引文献9

同被引文献15

  • 1沈嘉,索士强,全海洋,等.3GPP长期演进(LTE)技术原理与系统设计[M].北京:人民邮电出版社,2009.
  • 2Fei Huo, Guang Gong. XOR encryption versus phase en- cryption, an In-Depth analysis [ C ]// IEEE Transaction on Electromagnetic Compatibility,2015.
  • 3Fei Huo, Guang Gong. Physical Layer Phase Encryption for Combating the Traffic Analysis Attack [ C ]// IEEE Transaction on Electromagnetic Compatibility, 2014, 12 (34) :604-608.
  • 4Wyner A D. The wire-tap channel [ J ]. Bell System Techni- cal Journal,1975,54 (8) :1355-1387.
  • 5Wei Li, Mounir Ghogho, Bin Chen. Secure communica- tion via sending artificial noise by the receiver: outage se- crecy capacity/region analysis [ J ]. IEEE Communica- tions Letters, 2012,16 ( 4 ) : 1628-1631.
  • 6Jun Xiong, Kai-Kit Wong, Dongtang Ma, et al. A Closed- Form Power Allocation for Minimizing Secrecy Outage Probability for MISO Wiretap Channels via Masked Beam-forming[ J]. IEEE Communications Letters,2012,11 (9) : 1496-1499.
  • 7Chorti A. Masked-OFDM : A physical layer encryption for fu- ture OFDM applications [ C]//IEEE Glocom Workshops, 1254-1258,2010 Workshop on Mobile Computing and Emer- ging Communication Networks,2010 : 1254-1258.
  • 8Suzhi Bi, XiaoJun Yuan, Yingjun Zhang. Pragmatic phys- ical layer encryption for achieving perfect secrecy[J]. Computer Science,2012, 23(6) :16-19.
  • 9Fei Huo, Guang Gong. A new efficient physical layer OFDM encryption scheme [ C ] // IEEE Conference on Computer Communications, 2014: 1024-1032.
  • 10蕾蓓蓓.基于物理层加密的调制方式隐蔽算法研究[D].西安,西北大学,2012.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部