期刊文献+

基于线性化的混沌压缩感知重构算法 被引量:1

Linearization based Reconstruction Algorithm of Chaotic Compressive Sensing
在线阅读 下载PDF
导出
摘要 混沌压缩感知是一种利用混沌系统实现非线性测量,非线性等式约束l1范数最小化实现信号重构的压缩感知理论;具有实现结构简单,测量数据保密性强等特点。但是,现有算法不能有效地求解非线性等式约束l1范数最小化,求解结果受到额外参数影响。本文通过对非线性约束线性化处理,将非线性等式约束l1范数最小化问题转化为一系列二次锥规划问题,利用线性化迭代二次锥规划算法进行求解,消除了额外参数对信号重构性能的影响,保证了算法的收敛性和提高了信号的重构性能。本文以Henon混沌为例,仿真分析了频域稀疏信号的重构性能,模拟证明了算法的有效性。 Chaotic Compressive Sensing(ChaCS) is a nonlinear compressive sensing theory,which uses chaotic systems to measure signals and performs the signal reconstruction by nonlinearly constrained l1-norm minimization.The ChaCS is simple in implementation and generates secure measurement data.However,existing algorithms cannot efficiently solve the nonlinearly constrained l1-norm minimization,and the reconstruction quality is affected by the algorithm-induced parameters.By linearizing nonlinear constraints,this paper proposes to solve the problem by iterative second order cone programming through the transformation of the nonlinearly constrained l1-norm minimization into a series of second order cone programming.The resulting algorithm eliminates the influence of the induced parameter in signal reconstruction.It is convergent and improves the reconstruction performance of signals.The Henon system is taken as examples to expose the estimation performance of frequency sparse signals.Numerical simulations illustrate the effectiveness of the proposed method.
出处 《信号处理》 CSCD 北大核心 2012年第6期806-811,共6页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60971090 61171166 61101193)
关键词 混沌压缩感知 重构 线性化 参数估计 Chaotic Compressive Sensing Reconstruction Linearization Parameter Estimation
  • 相关文献

参考文献11

  • 1Donoho D. Compressed sensing [ J ]. IEEE Transactions on Information Theory ,2006,52(4) : 1289-1306.
  • 2Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incom- plete frequency information [ J ]. IEEE Transactions onInformation Theory ,2006,52 ( 2 ) :489-509.
  • 3Candes E and Tao T. Near-optimal signal recovery from random projections : universal encoding strategies? [ J ]. IEEE Transactions on Information Theory,2006,52 (12) : 5406 -5425.
  • 4Candes E and Tao T. Decoding by linear programming [ J]. IEEE Transactions on Information Theory,2005,51 (12) :4203-4215.
  • 5Tropp J A, Wakin M, and Duarte M, et al. Random fil- ters for compressive sampling and reconstruction [ C ]. International Conference on Acoustics, Speech, and Sig- nal Processing (ICASSP) , Toulouse ,2006 : 872- 875.
  • 6Liu Z, Chen S Y, and Xi F. A compressed sensing framework of frequency-sparse signals through chaotic sys- tems [ J ]. Accepted for the publication in International Journal of Bifurcation and Chaos.
  • 7Grant M and Boyd S. CVX user' guide for CVX version 1.21 [ online], accessible at: http: JJweb. cvxr. corn/ cvx/cvx usrguide, pdf.
  • 8Candes E, Romberg J, Ll-magic : recovery of sparse sig- nals via convex programming [ online ]. accessible at: ht- tp : Jjusers. ece. gatech, edu/ justin/llmagic/.
  • 9Sturm J. Using SeDuMi 1.02, a MATLAB toolbox for op- timization over symmetric cones [ J ]. Optimization Meth- ods and Software, 1999,11 (12) :625- 653.
  • 10Yang T and Chua L O. Impulsive stabilization for control and synchronization of chaotic systems : theory and appli- cation to secure communication [ J ]. IEEE Transactions on Circuits and System-I: Fundamental Theory and Appli- cations, 1997,44(10) :976-988.

同被引文献14

  • 1Donoho D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
  • 2Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transaction on Information Theory,2006,52(2):489-509.
  • 3Liu Z,Chen S Y,Xi F.A compressed sensing framework of frequency-sparse signals through chaotic systems[J].International Journal of Bifurcation and Chaos,2012,22(6):1250151.1-1250151.9.
  • 4Laska J N,Kirolos S,Massoud Y,Baraniuk R G,Gilbert A,Iwen M,Strauss M.Random sampling for analog-to-information conversion of wideband signals[C].IEEE Dallas/CAS Workshop on Design,Applications,Integration and Software,Dallas,2006:119-122.
  • 5Tropp J A,Wakin M B,Duarte M F,Baron D,Baraniuk R G.Random filters for compressive sampling and reconstruction[C].IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP),Toulouse,2006:872-875.
  • 6Tropp J A,Laska J N,Duarte M F,Romberg J K,Baraniuk R G.Beyond Nyquist:efficient sampling of sparse bandlimited signals[J].IEEE Transaction on Information Theory,2010,58(1):520-544.
  • 7Taheri O,Vorobyov S A.Segmented compressed sampling for analog-to-information conversion:Method and performance analysis[J].IEEE Transactions on Signal Processing,2011,59(2):554-572.
  • 8Xi F,Chen S Y,Liu Z.Chaotic analog-to-information conversion:principle and reconstructability with parameter identifiability[EB/OL].http:// arxiv.org/abs/1212.2725,12Dec.,2012.
  • 9Chen S Y,Xi F,Liu Z.Chaotic Modulation for Analogto-Information Conversion[EB/OL].http:// arxiv.org/abs/1301.0387,3 Jan.,2013.
  • 10Parlitz U,Junge L,Kocarev L.Synchronization-based parameter estimation from time series[J].Physical Review E,1996,54(6):6253-6259.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部