期刊文献+

基于非下采样Contourlet变换的医学图像融合 被引量:5

Medical Image Fusion Based on the Nonsubsampled Contourlet Transform
原文传递
导出
摘要 针对多模态医学影像的成像原理,为了弥补各个模态的医学图像的不足,提出了一种基于非下采样Contourlet变换的医学图像融合算法。首先对源图像进行非下采样Contourlet分解,分别得到低频子带系数和高频子带系数,然后对低频子带系数采用区域能量加权的融合规则,高频子带系数则选取区域标准差比例加权作为融合规则,最后进行非下采样Contourlet逆变换,得到融合图像。通过实验对比表明,该算法明显优于小波(Wavelet)、Contourlet、Wavelet+CS(CS为压缩感知)算法,具有更好的融合性能,清晰度更高,是一种可行、有效的图像融合方法。 For the imaging principle of multi-modal medical image, in order to make up for the shortage of the various modes of medical images, a novel medical image fusion algorithm is proposed based on the nonsubsampled contourlet transform (NSCT). Firstly, two registered source images are decomposed by the nonsubsampled contourlet transform to obtain the low frequency subband coefficients and high frequency subband coefficients. Secondly, for the low frequency subband coefficients, the fusion principle is based on the weight of local area energy. As for the high frequency subband coefficients, we choose the weight of the area standard deviation ratio as a rule. Finally, the fusion image is obtained by the nonsubsampled contourlet inverse transform. The experimental results show that the proposed method is feasible and effective, and it has better fusion performance and higher definition than the wavelet, contourlet, and wavelet++CS (CS.. compressive sensing) algorithms.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第11期94-99,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61102008) 教育部重点实验室开放基金(IPIU012011006) 北方民族大学科研项目(2011Y021)
关键词 图像处理 医学图像融合 非下采样CONTOURLET变换 标准差 区域能量 image processing medical image fusions nonsubsampled contourlet transforms standard deviations local area energy
  • 相关文献

参考文献11

二级参考文献92

共引文献90

同被引文献54

  • 1刘贵喜,赵曙光,陈文锦.红外与可见光图像融合的多分辨率方法[J].光电子.激光,2004,15(8):980-984. 被引量:24
  • 2高广珠,李忠武,余理富,何智勇.归一化互相关系数在图像序列目标检测中的应用[J].计算机工程与科学,2005,27(3):38-40. 被引量:17
  • 3康圣,王江安,宗思光,陈福胜.图像融合的量化评价方法及实验分析[J].光电子技术与信息,2006,19(2):59-63. 被引量:12
  • 4Qi-guang Miao,Cheng Shi,Peng-fei Xu,Mei Yang,Yao-bo Shi.A novel algorithm of image fusion using shearlets[J]. Optics Communications . 2010 (6)
  • 5Tianjie Li,Yuanyuan Wang.Multiscaled combination of MR and SPECT images in neuroimaging: A simplex method based variable-weight fusion[J]. Computer Methods and Programs in Biomedicine . 2010 (1)
  • 6Tianjie Li,Yuanyuan Wang.Biological image fusion using a NSCT based variable-weight method[J]. Information Fusion . 2010 (2)
  • 7Shuyuan Yang,Min Wang,Licheng Jiao,Ruixia Wu,Zhaoxia Wang.Image fusion based on a new contourlet packet[J]. Information Fusion . 2009 (2)
  • 8L. Yang,B.L. Guo,W. Ni.Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform[J]. Neurocomputing . 2008 (1)
  • 9Glenn Easley,Demetrio Labate,Wang-Q Lim.Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis . 2007 (1)
  • 10Robert James Cerfolio,Ayesha S. Bryant,Buddhiwardhan Ojha.Restaging patients with N2 (stage IIIa) non–small cell lung cancer after neoadjuvant chemoradiotherapy: A prospective study[J]. The Journal of Thoracic and Cardiovascular Surgery . 2006 (6)

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部