期刊文献+

图像的多尺度几何分析:回顾和展望 被引量:227

Development and Prospect of Image Multiscale Geometric Analysis
在线阅读 下载PDF
导出
摘要 多尺度几何分析旨在构建最优逼近意义下的高维函数表示方法 .本文以二维函数的非线性逼近为主线 ,分析了推动多尺度几何分析发展的深刻数学和生理学背景 ,综述了图像多尺度几何分析方法的最新进展及存在的问题 。 The aim of Multiscale Geometric Analysis is to find a kind of optimal representation of high dimension function in the sense of nonlinear approximation.Based on the nonlinear approximation of 2-D function,the mathematical and neurophysiological backgrounds of Image Multiscale Geometric Analysis are studied on this paper,and its development history,current and future challenges are reviewed in details.
作者 焦李成 谭山
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第z1期1975-1981,共7页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 0 730 53) 国家"863"计划 (No.2 0 0 2AA1 350 80 ) "十五"国防预研项目 (No .41 30 70 50 4 )
关键词 多尺度几何分析 小波变换 BANDELET变换 脊波变换 单尺度脊波变换 CURVELET变换 CONTOURLET变换 multiscale geometric analysis wavelet transform bandelet transform ridgelet transform monoscale ridgelet transform curvelet transform contourlet transform
  • 相关文献

参考文献58

  • 1[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 2[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 3[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 4[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 5[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 6[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

二级参考文献2

共引文献37

同被引文献2156

引证文献227

二级引证文献1226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部