期刊文献+

辅助信息自动生成的时间序列距离度量学习 被引量:9

Distance Metric Learning Based on Side Information Autogeneration for Time Series
在线阅读 下载PDF
导出
摘要 对于时间序列聚类任务而言,一个有效的距离度量至关重要.为了提高时间序列聚类的性能,考虑借助度量学习方法,从数据中学习一种适用于时序聚类的距离度量.然而,现有的度量学习未注意到时序的特性,且时间序列数据存在成对约束等辅助信息不易获取的问题.提出一种辅助信息自动生成的时间序列距离度量学习(distance metric learning based on side information autogeneration for time series,简称SIADML)方法.该方法利用动态时间弯曲(dynamic time warping,简称DTW)距离在捕捉时序特性上的优势,自动生成成对约束信息,使习得的度量尽可能地保持时序之间固有的近邻关系.在一系列时间序列标准数据集上的实验结果表明,采用该方法得到的度量能够有效改善时间序列聚类的性能. An effective distance metric is essential for time series clustering. To improve the performance of time series clustering, various methods of metric learning can be applied to generate a proper distance metric from the data. However, the existing metric learning methods overlook the characteristics of time series. And for time series, it is difficult to obtain side information, such as pairwise constraints, for metric learning. In this paper, a method for distance metric learning based on side information autogeneration for time series (SIADML) is proposed. In this method, dynamic time warping (DTW) distance is used to measure the similarity between two time series and generate pairwise constraints automatically. The metric which is learned from the pairwise constraints can preserve the neighbor relationship of time series as much as possible. Experimental results on benchmark datasets demonstrate that the proposed method can effectively improve the performance for time series clustering.
出处 《软件学报》 EI CSCD 北大核心 2013年第11期2642-2655,共14页 Journal of Software
基金 国家自然科学基金(61139002)
关键词 度量学习 动态时间弯曲 辅助信息自动生成 时间序列聚类 metric learning dynamic time warping side information autogeneration time series clustering
  • 相关文献

参考文献28

  • 1Kim S, Park S, Chu W. An index-based approach for similarity search supporting time warping in large sequence databases. In: Proc. of the Int’l Conf. of Data Engineering. IEEE Computer Society, 2001. 607-614. [doi: 10.1109/ICDE.2001.914875].
  • 2Settles B. Active learning literature survey. Technical Report, 1648, University of Wisconsin-Madison, 2009.
  • 3Shental N, Hertz T, Weinshall D, Pavel M. Adjustment learning and relevant component analysis. In: Proc. of the European Conf. on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2002. 776-792. [doi: 10.1007/3-540-47979-1 52].
  • 4Keogh E. Exact indexing of dynamic time warping. In: Proc. of the Int’l Conf. on Very Large Databases. 2002. 406-417. [doi: 10.1007/s 10115-004-0154-9].
  • 5Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA. The UCR time series classification/clustering homepage. 2011. http://www.cs.ucr.edu/~eamonn/time_series_data/.
  • 6Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA. Fast time series classification using numerosity reduction. In: Proc. of the Int’l Conf. on Machine Learning. ACM, 2006. 1033-1040. [doi: 10.1145/1143844.1143974].
  • 7Rakthanmanon T, Campana BJ, Mueen A, Batista G, Westover B, Qiang Z, Zakaria J, Keogh E. Searching and mining trillions of time series subsequences under dynamic time warping. In: Proc. of the Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2012. 262-270. [doi: 10.1145/2339530.2339576].
  • 8Jain P, Kulis B, Davis JV, Dhillon IS. Metric and kernel learning using a linear transformation. Journal of Machine Learning Research, 2012,13:519-547.
  • 9Hoi SCH, Liu W, Lyu MR, Ma WY. Learning distance metrics with contextual constraints for image retrieval. In: Proc. of the Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society, 2006. 2072-2078. [doi: 10.1109/CVPR.2006.167].
  • 10Shimodaira H, Noma K, Nakai M, Sagayama S. Dynamic time-alignment kernel in support vector machine. In: Advances in Neural Information Processing Systems 15. The MIT Press, 2002. 921-928.

二级参考文献4

  • 1朱扬勇,熊赟.DNA序列数据挖掘技术[J].软件学报,2007,18(11):2766-2781. 被引量:37
  • 2Gonzalo Navarro. Searching in metric spaces by spatial approximation[J] 2002,The VLDB Journal(1):28~46
  • 3Ada Wai-chee Fu,Polly Mei-shuen Chan,Yin-Ling Cheung,Yiu Sang Moon. Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise distances[J] 2000,The VLDB Journal(2):154~173
  • 4Pavel Zezula,Pasquale Savino,Giuseppe Amato,Fausto Rabitti. Approximate similarity retrieval with M-trees[J] 1998,The VLDB Journal(4):275~293

共引文献9

同被引文献163

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:61
  • 3Xing E P, Ng A Y, Jordan M I, Russell S. Distance metric learning with application to clustering with side- information. In: Proceedings of the 2003 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2003. 521-528.
  • 4Goldberger J, Roweis S, Hinton G, Salakhutdinov R. Neigh- bourhood components analysis. In: Proceedings of the 2004.Advances in Neural Information Processing Systems. Van- couver, Canada: MIT Press, 2004. 513-520.
  • 5Weinberger K Q, Saul L K. Distance metric learning for large margin nearest neighbor classification. JournM of Ma- chine Learning Research, 2009, 10:207-244.
  • 6Xiang S M, Nie F P, Zhang C S. Learning a Mahalanobis dis- tance metric for data clustering and classification. Pattern Recognition, 2008, 41(12): 3600-3612.
  • 7Mensink T, Verbeek J, Perronnin F, Csurka G. Metric learn- ing for large scale image classification: generalizing to new classes at near-zero cost. In: Proceedings of the 12th Eu- ropean Conference on Computer Vision. Florence, Italy: IEEE. 2012. 488-501.
  • 8Feng Z Jin 1 Jain A. Large-scale image annotation by ef- ficient and robust kernel metric learning. In: Proceedings of the 2013 International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 1609-1616.
  • 9Wang X Y, Hua G, Han T X. Discriminative tracking by metric learning. In: Proceedings of the llth European Con- ference on Computer Vision. Heraklion, Greece: Springer, 2010. 200-214.
  • 10Chen J H, Zhao Z, Ye J P, Liu H. Nonlinear adaptive dis- tance metric learning for clustering. In: Proceedings of the 2007 International Conference on Knowledge Discovery and Data Mining. California, USA: ACM, 2007. 123-132.

引证文献9

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部