期刊文献+

融合与Topping-off术对腰椎影响的有限元分析 被引量:5

Finite element analysis of lumbar fusion and Topping-off surgery
暂未订购
导出
摘要 目的:应用有限元方法分析Topping-off术对融合节段的相邻节段的影响.方法:建立L1~L5正常腰椎有限元模型,经与文献结果对比验证有效性后分别建立2种手术模型:(1)L4/L5节段融合的后路腰椎椎间融合术(posterior lumbar intervertebral fusion,PLIF)模型,(2)L4/L5节段融合及L3/L4节段植入棘突间固定装置(interspinous spacer,ISP)的Topping-off模型.分别对两者L1椎体上终板施加500 N垂直压缩载荷以及10 Nm前屈、后伸、(左)侧屈和(右)旋转力矩载荷,观察L3/L4节段活动度、椎间盘压力、小关节应力及L3、L4棘突应力情况,使用SPSS 21.0统计软件对结果进行分析.结果:在前屈、后伸载荷下,Topping-off模型L3椎体相对位移、椎间盘纤维环及髓核压力、双侧小关节应力小于PLIF模型(P〈0.05),L3、L4椎体棘突应力大于PLIF模型(P〈0.05).在左侧屈载荷下,Topping-off模型L3/L4节段左侧小关节应力小于PLIF模型(P〈0.05).结论:Topping-off术能够降低融合相邻节段的椎间盘和小关节负荷,具有潜在的预防融合相邻节段退变的作用. Objective:To evaluate the effect of Topping-off surgery on the adjacent segment of PLIF. Methods: A finite element model of the human lumbar spine ( L1 - L5 ) was developed. The intact spi- nal model was validated by comparing it with previously reported models. Then, 2 models were analyzed and compared: ( 1 ) posterior lumbar interbody fusion (PLIF) at IA/5 ; (2) posterior lumbar interbody fusion at IA/5 and implantation of the interspinous spacer (ISP) at L3/4 (Topping-off). Then 500 N compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending and axial rotation were imposed on both the L1 superior endplates. The ranges of motion, intradiscal pressures, facet stres- ses in L3/4, the stresses on spinous processes in L3 and IA were investigated. All the measured data were analyzed by SPSS 21.0. Results: The effect of the Topping-off on the adjacent segment appeared mainly in flexion-extension : the ranges of motion, intradiscal pressures ( annulus and nucleus pulposus), both facet stresses were lower than that of the PLIF model, and the stresses on spinous processes in L3 and L4 were larger. Besides, the facet stresses on the left side in the left lateral bending were also lower than those of the PLIF model. Condusion: Topping-off model is able to restrict the range of motion of the lumbar adjacent segment, decrease the intradiscal pressure and facet stresses, and has a potential effect of oreventin~ adiacent segmental degeneration.
出处 《北京大学学报(医学版)》 CAS CSCD 北大核心 2013年第5期723-727,共5页 Journal of Peking University:Health Sciences
基金 北京市科学技术委员会(骨科常见疾病诊疗规范及康复技术研究 D101100049910006)资助~~
关键词 脊柱融合术 腰椎 生物力学 有限元分析 Topping—off术 Spinal fusion Lumbar vertebrae Biomechanics Finite element analysis Topping-off sur-gery
  • 相关文献

参考文献4

二级参考文献29

  • 1杨新海,曾祥龙.牙弓形状和标准弓形的研究[J].中华口腔正畸学杂志,1997,13(2):51-54. 被引量:15
  • 2王惠芸.我国人牙的测量和统计[J].中华口腔科杂志,1959,7(3):149-149.
  • 3Kabir SM, Gupta SR, Casey AT. Lumbar interspinous spacers: a systematic review of clinical and biomechanical evidence [ J ]. Spine (Phila Pa 1976), 2010, 35(25) :E1499-1505.
  • 4Villarejo F, CareeUer F, de la Riva AG, et al. Experience with eoflex interspinous implant [ J ]. Aeta Neurochir Suppl, 2011, 108 : 171-175.
  • 5Hartmann F, Dietz SO, Hely H, et al. Biomechanical effect of different interspinous devices on lumbar spinal range of motion un- der preload conditions[J]. Arch Orthop Trauma Surg, 2011, 131 (7) :917-926.
  • 6Trautwein FT, Lowery GL, Wharton ND, et al. Determination of the in vivo posterior loading environment of the Coflex interlaminar- interspinous implant [ J ]. Spine J, 2010, 10 ( 3 ) : 244-251.
  • 7Burstone C]. The mechanics of the segmented arch techniques[J]. Angle Orthod, 1966, 36(2) :99-120.
  • 8Shroff B, Y oon WM, Lindauer SJ, et al, Simultaneous intrusion and retraction using a three-piece base arch[J]. Angle Orthod, 1997, 67 (6) : 455-461.
  • 9Wical KE, Swoope CC. Studies of residual ridge resorption. L Use of panoramic radiographs for evaluation and classification of man?dibular resorption[J].J Prosthet Dent, 1974, 32 (0: 7-12.
  • 10Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth movement produced by molar uprighting spring[J]. AmJ Orthod Dentofacial Orthop, 2007, 132 (5): 630-638.

共引文献59

同被引文献69

  • 1董凡,侯筱魁.小关节在腰椎结构刚度中的作用[J].中华外科杂志,1993,31(7):417-420. 被引量:28
  • 2Yang B, Fang SB, Li CS, et al. Digital three-dimensional model of lumbar region 4-5 and its adjacent structures based on a virtual Chi- nese human[J]. Orthop Surg, 2013, 5: 130-134.
  • 3Yang B, Kwak DS, Kim MK, et al. Morphometric trajectory analysis for the C2 crossing laminar screw technique[J]. Eur Spine J, 2010, 19: 828-32.
  • 4Burke LM, Yu WD, Ho A, et al. Anatomical feasibility of C-2 pedicle screw fixation: the effect of variable angle interpolation of axial CT scans[J]. J Neurosurg Spine, 2013, 18: 564-567.
  • 5Xu H, Chi YL, Wang XY, et al. Comparison of the anatomic risk for vertebral artery injury associated with percutaneous atlantoaxial an- terior and posterior transartieular screws[J]. Spine J, 2012, 12: 656-662.
  • 6Murakami S, Mizutani J, Fukuoka M, et al. Relationship between screw tmjectory of CI lateral inass scmw and internal carotid artery [J]. Spine, 2008, 33: 2581-2585.
  • 7Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus com- putedtomography[J]. Spine(Phila Pa 1976), 2012, 37: 1391-1397.
  • 8Zhu F, Bao HD, Yuan S, et al. Posterior second sacral alar iliac screw insertion: anatomic study in a Chinese population[J]. Eur Spine J, 2013, 22: 1683-1689.
  • 9Lee J, Kim S, Kim YS, et al. Optimal surgical planning guidance for lumbar spinal fusion considering operational safety and vertebra-screw interface strength[J]. Int J Med Robot, 2012, 8: 261-272.
  • 10Klein S, Whyne CM, Rush R, et al. CT-based patient-specific sim- ulation software for pedicle screw insertion[J]. J Spinal Disord Tech, 2009, 22: 502-506.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部