期刊文献+

植物激素乙烯作用机制的最新进展 被引量:17

Advances in the Action of Plant Hormone Ethylene
原文传递
导出
摘要 气体植物激素乙烯在植物生长发育及应对胁迫的防御反应中起重要调控作用.通过20多年的研究,利用模式植物拟南芥,勾画出一条自内质网膜受体至细胞核内转录因子的线性乙烯信号转导通路.本文概述了研究乙烯信号转导的方法及乙烯信号转导的基本过程;阐述了最新发现的乙烯信号从内质网膜传递到细胞核的分子机制,即原本定位于内质网膜上的EIN2蛋白其C端被剪切之后进入细胞核,然后通过抑制EBF1/2而稳定转录因子EIN3/EIL1;根据最近多个小组报道EIN3/EIL1直接调控除乙烯响应基因之外的其他生物学过程相关基因,提出了EIN3/EIL1可以作为网络节点整合多条信号通路的新观点;通过分析不同信号通路调控EIN3/EIL1的方式,发现不仅EIN3/EIL1的蛋白稳定性受到调控,而且其转录活性还受到诸如JAZ,DELLA等转录调节因子的调控.本文展望了未来乙烯信号转导通路的研究方向与研究热点. The simple gaseous phytohormone ethylene influences an extensive array of developmental processes and stress-resistance responses in plants. Based on molecular genetics studies, a nearly linear ethylene signaling pathway from endoplasmic reticulum (ER) membrane-bound receptors to nuclear-localized transcription factors has been established in the model plant Arabidopsis during the past two decades. In this review, we firstly summarize the approaches used to study ethylene signal transduction and depict the overall picture of ethylene signaling pathway. Then, we focus on the latest discovery of the cleaved EIN2 carboxyl terminus (CEND) translocating from ER membrane to the nucleus and promoting the accumulation of EIN3/EIL1 by repressing the activity of EBF1/2. We also propose that EIN3/EIL1 act as a hub in plant signaling networks that senses a broad range of stimuli and integrates these stimuli to shape plant growth, development and stress resistance. A collection of regulators, such as JAZ and DELLA proteins, have been identified recently mechanisms including protein stability and transcriptional ethylene action are raised and briefly discussed. to modulate the functions of EIN3 and EIL1 by different activity. In the end, several interesting questions regarding
出处 《中国科学:生命科学》 CSCD 北大核心 2013年第10期854-863,共10页 Scientia Sinica(Vitae)
基金 国家自然科学基金(批准号:91017010) 转基因生物新品种培育科技重大专项(批准号:2010ZX08010-002)资助项目
关键词 植物激素 乙烯 信号转导 EIN2EIN3 EIL1 EBF1 2 plant hormone, ethylene, signal transduction, EIN2, EIN3/EIL1, EBF1/2
  • 相关文献

参考文献5

二级参考文献76

  • 1Darwin C, Darwin F. The power of movement in plants. New York: D Appleton and Co, 1881:87-94.
  • 2Silk WK, -Erickson RO. Kinematics of hypocotyl curvature. Am J Bot 1978; 65:310-319.
  • 3Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. Conver- gence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 2004; 7:193-204.
  • 4Schwark A, Schierle J. Interaction of ethylene and auxin in the regulation of hook growth I: the role of auxin in different growing regions of the hypocotyl hook ofPhaseolus vulgaris. J Plant Physiol 1992; 140:562-570.
  • 5Boerjan W, Cervera MT, Delarue M, et al. Superroot, a reces- sive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 1995; 7:1405-1419.
  • 6Zhao Y, Christensen SK, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 2001; 291:306-309.
  • 7Stepanova AN, Robertson-Hoyt J, Yun J, et al. TAAl-medi- ated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 2008; 133:177-191.
  • 8Lehman A, Black R, Ecker JR. HOOKLESS I, an ethylene re- sponse gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 1996; 85:183-194.
  • 9Abeles FB, Morgan PW, Saltveit JME. Ethylene in Plant Biology. 2nd Edition. San Diego: Academic Press, 1992.
  • 10Ecker JR. The ethylene signal transduction pathway in plants. Science 1995; 268:667-675.

共引文献103

同被引文献203

引证文献17

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部