期刊文献+

基于信任用户联合聚类的协同过滤算法 被引量:1

A Collaborative Filtering Algorithm Based on Clustering of Users Trust
在线阅读 下载PDF
导出
摘要 目前大量的协同过滤算法由于用户量过大存在速度瓶颈问题,由于新用户的加入导致冷启动问题。本文提出一种结合用户信任度和用户兴趣进行聚类的协同过滤算法。该算法综合用户信任度以及用户评分相似性来进行聚类,在聚类结果中寻找最近邻居并产生推荐。实验结果表明,该方法不仅加快了推荐结果的产生,而且还提高了推荐精度。 At present,the large number of users has led to speed bottleneck problem,and the addition of new users has led to the cold start problem in collaborative filtering algorithm.A collaborative filtering algorithm is proposed based on clustering of the users trust and interests.The algorithm clusters the users based on their trust degree and scoring similarity.The experimental results show that,this method not only accelerates the results recommended,but also improves the accuracy of recommendation.
作者 王宗武
出处 《计算机与现代化》 2013年第9期50-53,共4页 Computer and Modernization
关键词 推荐系统 协同过滤 聚类 用户信任 recommender system collaborative filtering clustering users trust
  • 相关文献

参考文献15

  • 1Marko Balabanovic,Yoav Shoham.Fab:Content-based,collaborative recommendation[J].Communications of the ACM,1997,40(3):66-72.
  • 2Herlocker J L,Konstan J A,Terveen L G,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 3Panagiotis Symeonidis,Eleftherios Tiakas,Yarnis Manolopoulos.Product recommendation and rating prediction based on multi-modal social networks[C]//Proceedings of the 5th ACM Conference on Recommender Systems.2011:61-68.
  • 4Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17 (6):734-749.
  • 5Xue Guirong,Lin Chenxi,Yang Qiang,et al.Scalable collaborative filtering using cluster-based smoothing[C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.2005:114-121.
  • 6Henry Kautz,Bart Selman,Mehul Shah.Referral Web:Combining social networks and collaborative filtering[J].Communications of the ACM,1997,40 (3):63-65.
  • 7Deshpande M,Karypis G.Item-based top-N recommendation algorithms[J].ACM Transactions on Information Systems,2004,22(1):143-177.
  • 8Bell R M,Koren Y.Improved Neighborhppd-based Collaborative Filtering[DB/OL].http://www.cs.uic.edu/~liuh/KDD-cup-2007/proceedings/Neighbor-Koren.pdf,2007-08-12.
  • 9Koren Y.Factor in the neighbors:Scalable and accurate collaborative filtering[J].ACM Transactions on Knowledge Discovery from Data,2010,4 (1):1-24.
  • 10Massa P,Avesani P.Trust-aware recommender systems[C]// Proceedings of the 2007 ACM Conference on Recommender Systems.2007:17-24.

二级参考文献23

  • 1Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 2Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 3Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 4Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 5Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.
  • 6Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42.
  • 7Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8.
  • 8Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310.
  • 9Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53.
  • 10Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.

共引文献224

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部