期刊文献+

驾驶员疲劳检测系统的研究 被引量:7

Research on driver fatigue detection system
在线阅读 下载PDF
导出
摘要 为了减少由于驾驶员疲劳驾驶引起的交通事故,提出驾驶员疲劳状态检测系统的方案。使用3×3中值滤波去除噪声和光照对图像的影响,通过对AdaBoost算法的强分类器训练算法改进、级联分类器优化实现人脸的快速检测,在检测到的人脸区域,通过积分灰度投影和从粗到细改进的模板匹配方法对人眼进行准确定位;通过PERCLOS、眼睛闭合时间、眼睛眨眼频率、嘴巴张开程度、头部运动的计算,进行驾驶员疲劳程度的综合判定。实验结果表明,该方法准确率高,兼具了良好的实时性和鲁棒性。 In order to reduce the traffic accidents caused by driver fatigue, this paper proposes a method of the driver fatigue detection system. This method uses median filtering to remove the impact of image noise and light, then achieves rapid detection of human faces by the improved strong classifier training algorithm of AdaBoost algorithm and the optimized cascade. In the detected face region, it uses gray projection points and an improved from coarse to fine template matching method to implement the positioning of human eyes accurately. Using calculated PERCLOS, closure eye time, eye blink frequency, degree of mouth opening and the movement of head, it can determine the comprehensive degree of driver fatigue. The experimental results show that this method has high accuracy with a good real-time and robustness.
出处 《计算机工程与应用》 CSCD 2013年第15期253-258,共6页 Computer Engineering and Applications
关键词 疲劳检查 人脸检测 人眼定位 fatigue detection face detection eyes location
  • 相关文献

参考文献13

  • 1Wang Qiong,Yang Jingyu, Ren Mingwu, et al.Driver fatigue detection: a survey[C]//Proc of the 6th World Congress on Intelligent Control and Automation,2006:21-23.
  • 2Fletcher L, Apostoloff N, Petersson L, et al.Vision in and out of vehicles[J].IEEE Trans on Intelligent Transportation Systems,2003,18(3) : 12-17.
  • 3Boveris S.Driver fatigue monitoring technologies and future ideas[C]//Proc of AWAKE Road Safety Workshop,2004.
  • 4Longhurst G.Understanding driver visual behaviour[R].Brad- don,Australia: Seeing Machine Pty Limited, 2002.
  • 5Yang M H,Kriegman D,Ahuja N.Detecting faces in images: a survey[J].IEEE Trans on Pattern Analysis and Machine In- telligence, 2002,24( 1 ) : 34-58.
  • 6Viola P, Jones M.Robust rapid object detection using a boosted cascade of simple features[C]//8th IEEE International Confer- ence on Computer Vision(ICCV), 2001 : 511-518.
  • 7Houck C R, Joines J A, Kay M G.A genetic algorithm for fimction optimization: a matlab implementation, technical report TR 95-09[R].North Carolina State University,1995.
  • 8Freund Y, Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences, 1997,55(1) : 119-139.
  • 9Sehapire R E.The strength of weak learn ability[J].Machine Learning, 1990,5(2) : 197-227.
  • 10顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17. 被引量:125

二级参考文献47

共引文献188

同被引文献62

  • 1葛如海,陈彦博,刘志强.基于计算机视觉的驾驶疲劳识别方法的研究[J].中国安全科学学报,2006,16(9):134-138. 被引量:11
  • 2Correa A G, Orosco L, Laciar E. Automatic detection of drowsi- ness in EEG records based on muhimodal analysis[J]. Medical Engineering g: Physics, 2014,36 (2) : 244-249.
  • 3Li G,Chung W Y. Detection of Driver Drowsiness Using Wave- let Analysis of Heart Rate Variability and a Support Vector Ma- chine Classifier[J] Sensors,2013,13(12) : 16494-16511.
  • 4Hinton G, Salakhutdinov R. Reducing the Dimensionality of Da- ta with Neural Networks[J]. Science,S006,313(5786):504 507.
  • 5Hinton G E, Osindero S. A Fast Learning Algorithm for Deep Belief Nets[J] Neural Computation,2006,18:1527-1554.
  • 6Hinton G. Trainging Products o{ Experts by Minimizing Cont- rastive Divergence[J]. Neural Computation, 2002, 14 (8) : 1771- 1800.
  • 7Neal R M, Hinton G E. A View of the EM Algorithm that Justi- fies Incremental, Sparse and other Variants[M] // Learning in Graphical Models, 1998,355-368.
  • 8Dasgupta A,George A, Happy SL, et al. A Vision-Based System {or Monitoring the Loss of Attention in Automotive Drivers[J]. IEEE Transactions on Intelligent Transportation Systems: 2013,14(4) : 1825-1838.
  • 9Cyganek B,Gruszczynski S. Hybrid computer vision system for drivers' eye recognition and fatigue monitoring[J]. Neural com- putation, 2014,126 (SI) : 78-94.
  • 10Li Liling,Xie Mei,Dong Huazhi.A method of driving fatigue detection based on eye location[C] //Proc of the 3rd IEEE International Conference on Communication Software and Networks,2011:480-484.

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部