期刊文献+

基于S_(1/2)建模的稳健稀疏–低秩矩阵分解 被引量:14

Robust sparse and low-rank matrix decomposition based on S_(1/2) modeling
原文传递
导出
摘要 为实现稳健的稀疏–低秩矩阵分解,本文首次引入矩阵的S1/2范数以诱导矩阵的低秩性来构建新模型,并在ADMM算法框架下设计了高效的交替阈值迭代算法.该算法采用增广Lagrange乘子技术,在迭代过程中交替更新低秩矩阵和稀疏矩阵.由于这两个矩阵的最优更新具有显式形式,算法整体的计算精度和时间代价得以控制.大量的数值模拟实验说明:相较于目前最好的不精确ALM算法,交替阈值迭代算法的迭代次数与时间代价大幅降低,对噪声更为稳健,分解出的低秩矩阵的秩与稀疏矩阵的稀疏度更接近于真实值.在对监控视频进行背景建模这一实际问题中,交替阈值迭代算法得到的背景矩阵更为低秩,更符合问题先验,且时间代价相较于不精确ALM算法降幅高达一个数量级,这说明新模型与算法能有效解决相关实际问题. This paper introduces the S1/2-norm for matrices to induce their lower rank, based on which a new model for robust sparse and low-rank matrix decomposition is proposed. To the best of our knowledge, this is the first time that the S1/2-norm for matrices is used to characterize the low-rank property. Inspired by the alternating direction method of multipliers, we propose a computationally efficient algorithm, the alternating threshold iterarive algorithm, for the new model. The proposed Mgorithm adopts the augmented Lagrange multiplier technique and iteratively updates both the low-rank and sparse components in explicit form, making the global computation accuracy and time cost controllable. Numerous numerical simulation experiments are presented to show that the new algorithm requires much less computation time to obtain a more robust decomposition. In additiong the rank of the low-rank component and sparsity of the obtained compared with those of the state-of-the-art algorithm, inexact sparse matrix are much closer to their true values ALM, in solving these problems. When applied to a background modeling application for surveillance video, the new algorithm recovers the background matrix with a lower rank, which is sort of consistent with the prior while modeling, while the time cost is only 10% of that of the inexact ALM algorithm. All these findings confirm that the new model and algorithm can solve practical problems more effectively and efficiently.
出处 《中国科学:信息科学》 CSCD 2013年第6期733-748,共16页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61075054 60975036 11171272) 国家重点基础研究发展计划(973计划)(批准号:2013CB329404)资助项目
关键词 S1 2范数 稀疏-低秩矩阵分解 快速稳健 交替阈值迭代 S1/2-norm, sparse and low-rank matrix decomposition, efficient and robust, alternative thresholdingiteration
  • 相关文献

参考文献15

  • 1Candbs E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52:489- 509.
  • 2Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52:1289- 1306.
  • 3Chandrasekaran V, Sanghavi S, Parrilo P A, et al. Rank-sparsity incoherence for matrix decomposition. Technical Report ArXiv: 0906.2220, 2009.
  • 4Candies E J, Li X D, Ma Y, et al. Robust principle component analysis? J ACM, 2011, 58: article 11.
  • 5Chandrasekaran V, Sangavi S, Parrilo P A, et al. Sparse and low-rank mtrix decompositions. In: Proceedings of IEEE 47th Annual Allerton Conference on Communication, Control, and Computing, Illinois, 2009. 962-967.
  • 6Wight J, Ganesh A, Rao S, et al. Robust PCA: exact recovery of corrupted low-rank matriies via convex optimizaion. In: Advances in Neural hlformation Processing Systems, Vancouver, 2009.
  • 7Zhou Z, Li X, Wright J, et al. Stable principal component pursuit, Ii1: Proceedings of IEEE ISIT, Austin, 2010. 1518-1522.
  • 8Liu Z C, Ganesh A, Wright J, et al. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. UIUC Techinical Report UILU-ENG-09-2214, 2009.
  • 9Lin Z C, Chen M M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UTUC Technical Report UILU-ENG-09-2214, 2010.
  • 10Xu Z B, Zhang H, Wang Y, et ",d. L1/2 regularization. Sci China Inf Sci, 2010, 53:1159-1169.

同被引文献73

  • 1黎稳,孙伟伟.组合扰动界:Ⅱ.极分解[J].中国科学(A辑),2007,37(6):701-708. 被引量:11
  • 2张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:163
  • 3袁晖坪.行(列)对称矩阵的Schur分解和正规阵分解[J].山东大学学报(理学版),2007,42(10):123-126. 被引量:15
  • 4Meng Deyu, Zhao Qian, Xu Zongben. Improve robustness of sparse PCA by Ll-norm maximization [J]. Pattern Recogni- tion, 2012, 45 (1): 487-497.
  • 5Haipeng Shena, Jianhua Z Huang. Sparse principal component analysis via regularized low rank matrix approximation [J]. Journal of Multivariate Analysis, 2008, 99 (6): 1015-1034.
  • 6David Nelson, Siamak Noorbaloochi. Information preserving sufficient summaries for dimension reduction [J]. Journal of Multivariate Analysis, 2013, 115 (3): 347-358.
  • 7Ma S, Goldfarb D, Chen L. Fixed point and bregman iterative methods for matrix rank minimization [J ]. Math Progra, 2011, 128 (1-2): 321-353.
  • 8Cai J F, Cands E J, Shen Z W. A singular value thresholcling algorithm for matrix completion [J]. SIAM J Optim, 2010, 20: 1956-1982.
  • 9Bouwmans T,Baf F E,Vachon B. Statistical background modeling forforeground detection:a survey[ J], Handbook of Pattern Recogni-tion and Computer Vision,2010,4(2) :181-199.
  • 10Bouwmans T. Subspace learning for background modeling; a survey[J]. Recent Patent on Computer Science,2009,2(3) :223-234.

引证文献14

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部