期刊文献+

一种基于全变分正则化低秩稀疏分解的动态MRI重建方法 被引量:3

A total variation regularization low-rank and sparse matrix decomposition based reconstruction method of dynamic MRI images
原文传递
导出
摘要 针对应用迭代软阈值(IST)算法对基于低秩稀疏矩阵(L+S,low rank and sparse)分解模型的动态磁共振成像(MRI)图像进行重建存在重建精度一般和重建速度慢的问题,提出在矩阵L+S分解模型的基础上引入全变分(TV)正则项,达到进一步去噪声和去伪影,提高重建精度目的;利用非精确增广拉格朗日算法(IALM)达到快速重建的目的。通过对心脏灌注动态MRI成像和心电影MRI成像的仿真实验表明:对于L+S低秩稀疏矩阵分解模型的重建,IALM比IST算法速度更快,精度更高;模型引入TV正则项后再利用IALM重建,重建速度虽然比之前的IALM有所降低,但依然优于IST算法,并且重建精度高于之前的IALM。在L+S分解模型中引入TV正则项提高了MRI重建精度,运用IALM进行求解加快了重建速度,结合TV正则项和IALM达到了快速、高精度重建的目的。 The application of iterative soft threshold(IST)algorithm for dynamic magnetic resonance imaging(MRI)image reconstruction based on low-rank and sparse matrix decomposition exists two problems of the poor reconstruction accuracy and converge speed.Considering these problems,total variation(TV)regularization based on low-rank and sparse matrix decomposition model is introduced to further remove noise and artifacts.Besides,inexact augmented Lagrangian method(IALM)is used for fast reconstruction.In order to verify the effectiveness of the proposed method,the simulations about reconstruction of cardiac perfusion MRI and cardiac cine MRI are done.The results of the simulation demonstrate that:using IALM for low-rank and sparse matrix decomposition reconstruction results in better reconstruction performance than using IST method.Although introducing TV regularization reduces the reconstruction speed compared with IALM,it still fast than IST,and the reconstruction accuracy is higher than that of IALM.So introducing TV regularization to the low-rank and sparse matrix decomposition model can improve the MRI reconstruction accuracy,and using IALM algorithm can speed up the reconstruction speed.The combination of TV regularization and IALM algorithm has achieved the purpose of rapid and high precision reconstruction.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第1期87-96,共10页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61203245) 河北省自然科学基金(F2012202027)资助项目
关键词 压缩感知(CS) 低秩矩阵恢复 稀疏表示 动态磁共振成像(MRI) compressed sensing(CS) low-rank matrix completion sparsity dynamic magnetic resonance imaging(MRI)
  • 相关文献

参考文献26

  • 1Lustig M, Donoho D, Pauly J M. Sparse MRI :The applica- tion of compressed sensing for rapid MR imaging [J].Magnetic resonance in medicine, 2007, 58 (6): 1182- 1195.
  • 2Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[J]. Signal Processing Magazine, IEEE, 2008, 25(2) :72-82.
  • 3Cands [J,Romberg J,Tao T, Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Trans- actions on,2006,52(2) :489-509.
  • 4Donoho D L. Compressed sensing[J]. Information Theo- ry, IEEE Transactions on, 2006,52(4) : 1289-1306.
  • 5张婷婷,马杰,刘新艳,葛岭岭.低秩遮挡图像去噪方法[J].光电子.激光,2015,26(1):184-191. 被引量:10
  • 6Hu Y, Zhang D, Ye J, et al. Fast and accurate matrix com- pletion via truncated nuclear norm regularization[J]. Pat- tern Analysis and Machine Intelligence,lEEE Transactions on,2013,35(9) :2117-2130.
  • 7Majumdar A, Ward R K, Aboulnasr T. Non-convex algo- rithm for sparse and low-rank recovery: Application to dynamic MRI reconstruction[J]. Magnetic Resonance Im- aging, 2013,31 (3) : 448-455.
  • 8Majumdar A,Ward R. Fast SVD free low-rank matrix re- covery:Application to dynamic MRI reconstruction[A]. Proc. of Medical Imaging, m-Health and Emerging Com- munication Systems (MedCom), 2014 International Con- ference on. IEEEr-C]. 2014,24-29.
  • 9Chandrasekaran V, Sanghavi S, Parrilo P A, et al. Rank- sparsity incoherence for matrix decomposition[J]. Socie- ty for Industrial and Applied Mathematics Journal on Opti-mization,2011,21 (2) :572-596.
  • 10Cands [J,Li X,Ma Y,et al. Robust principal component analysis[J]. Journal of the ACM (JACM) ,2011,58(3) : 1- 37.

二级参考文献33

  • 1张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:163
  • 2Ohan S,Khoshabeh R,Gibson K.et al An augmented La- grangian method for total variation video restoration[J] IEEE Transactions on Image Processing, 2011, 20 ( 11) : 3097-3111.
  • 3Belekos S,Galatsanos N, Katsaggelos A. Maximum a pos- teriori video super-resolution using a new multichannel image prior[J] IEEE Transactions on Image Processing. 2010,19(6) :1151-1,164.
  • 4Ng M K .Shen H,Lam E Y.et al. A total variation regulari- zation based super-resolution reconstruction algorithm for digital video[J], EURASIP Journal on Advances in Signal Processing. 2007.201)7( 71585 ) : 1-16.
  • 5Chart S, Nguyen T LCD motion blur: modeling, analysisand algorithm[J]. IEEE Transactions on Image Process- ing,2011,20(8) :2352-2365.
  • 6Jahne B. Spatio-temporal image processing: theory and scientific applications[M]. Berlin; Springer, 1993,73-75.
  • 7Shechtman E,Oaspi Y, Irani M. Space-time super-resolu- tion[J]. IEEE Transactions On Pattern Analysis And Ma- chine Intelligence,2005,27(4) : 531-545.
  • 8Wexler Y, Shechtman E, Irani M. Space-time completion of video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(3) : 1-14.
  • 9Farsiu S, Elad M, Milanfar P. Video-to-video dynamic su- per-resolution for grayscale and color sequences [J]. EURASIP Journal on Advances in Signal Processing, 2006,2006(6) : 1859-1864,.
  • 10Dai S Y,Wu Y. Motion from blur[A]. Computer vision and pattern recognition[C]. Anchorage, AK : IEEE, 2008,1-8.

共引文献9

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部